1
|
Tao Y, Yang G, Yang H, Song D, Hu L, Xie B, Wang H, Gao L, Gao M, Xu H, Xu Z, Wu X, Zhang Y, Zhu W, Zhan F, Shi J. TRIP13 impairs mitotic checkpoint surveillance and is associated with poor prognosis in multiple myeloma. Oncotarget 2018; 8:26718-26731. [PMID: 28157697 PMCID: PMC5432292 DOI: 10.18632/oncotarget.14957] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 01/10/2017] [Indexed: 11/25/2022] Open
Abstract
AAA-ATPase TRIP13 is one of the chromosome instability gene recently established in multiple myeloma (MM), the second most common and incurable hematological malignancy. However, the specific function of TRIP13 in MM is largely unknown. Using sequential gene expression profiling, we demonstrated that high TRIP13 expression levels were positively correlated with progression, disease relapse, and poor prognosis in MM patients. Overexpressing human TRIP13 in myeloma cells prompted cell growth and drug resistance, and overexpressing murine TRIP13, which shares 93% sequence identity with human TRIP13, led to colony formation of NIH/3T3 fibroblasts in vitro and tumor formation in vivo. Meanwhile, the knockdown of TRIP13 inhibited myeloma cell growth, induced cell apoptosis, and reduced tumor burden in xenograft MM mice. Mechanistically, we observed that the overexpression of TRIP13 abrogated the spindle checkpoint and induced proteasome-mediated degradation of MAD2 primarily through the Akt pathway. Thus, our results demonstrate that TRIP13 may serve as a biomarker for MM disease development and prognosis, making it a potential target for future therapies.
Collapse
Affiliation(s)
- Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chienes Academy of Sciences, Shanghai 201602, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
3
|
Coutinho AE, Kipari TMJ, Zhang Z, Esteves CL, Lucas CD, Gilmour JS, Webster SP, Walker BR, Hughes J, Savill JS, Seckl JR, Rossi AG, Chapman KE. 11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice. Endocrinology 2016; 157:2928-36. [PMID: 27145012 PMCID: PMC4929552 DOI: 10.1210/en.2016-1118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans.
Collapse
Affiliation(s)
- Agnes E Coutinho
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Tiina M J Kipari
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Zhenguang Zhang
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Cristina L Esteves
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Christopher D Lucas
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - James S Gilmour
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Scott P Webster
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Brian R Walker
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeremy Hughes
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John S Savill
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jonathan R Seckl
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Karen E Chapman
- Centre for Cardiovascular Science (A.E.C., T.M.J.K., Z.Z., C.L.E., J.S.G., S.P.W., B.R.W., J.R.S., K.E.C.) and Medical Research Council Centre for Inflammation Research (A.E.C., C.D.L., J.S.G., J.H., J.S.S., A.G.R.), Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|