1
|
Despot-Slade E, Širca S, Mravinac B, Castagnone-Sereno P, Plohl M, Meštrović N. Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs. BMC Biol 2022; 20:259. [PMCID: PMC9673304 DOI: 10.1186/s12915-022-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Satellite DNAs (satDNAs) are tandemly repeated non-coding DNA sequences that belong to the most abundant and the fastest evolving parts of the eukaryotic genome. A satellitome represents the collection of different satDNAs in a genome. Due to extreme diversity and methodological difficulties to characterize and compare satDNA collection in complex genomes, knowledge on their putative functional constraints and capacity to participate in genome evolution remains rather elusive. SatDNA transcripts have been detected in many species, however comparative studies of satDNA transcriptome between species are extremely rare.
Results
We conducted a genome-wide survey and comparative analyses of satellitomes among different closely related Meloidogyne spp. nematodes. The evolutionary trends of satDNAs suggest that each round of proposed polyploidization in the evolutionary history is concomitant with the addition of a new set of satDNAs in the satellitome of any particular Meloidogyne species. Successive incorporation of new sets of satDNAs in the genome along the process of polyploidization supports multiple hybridization events as the main factor responsible for the formation of these species. Through comparative analyses of 83 distinct satDNAs, we found a CENP-B box-like sequence motif conserved among 11 divergent satDNAs (similarity ranges from 36 to 74%). We also found satDNAs that harbor a splice leader (SL) sequence which, in spite of overall divergence, shows conservation across species in two putative functional regions, the 25-nt SL exon and the Sm binding site. Intra- and interspecific comparative expression analyses of the complete satDNA set in the analyzed Meloidogyne species revealed transcription profiles including a subset of 14 actively transcribed satDNAs. Among those, 9 show active transcription in every species where they are found in the genome and throughout developmental stages.
Conclusions
Our results demonstrate the feasibility and power of comparative analysis of the non-coding repetitive genome for elucidation of the origin of species with a complex history. Although satDNAs generally evolve extremely quickly, the comparative analyses of 83 satDNAs detected in the analyzed Meloidogyne species revealed conserved sequence features in some satDNAs suggesting sequence evolution under selective pressure. SatDNAs that are actively transcribed in related genomes and throughout nematode development support the view that their expression is not stochastic.
Collapse
|
2
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
3
|
Despot-Slade E, Mravinac B, Širca S, Castagnone-Sereno P, Plohl M, Meštrović N. The Centromere Histone Is Conserved and Associated with Tandem Repeats Sharing a Conserved 19-bp Box in the Holocentromere of Meloidogyne Nematodes. Mol Biol Evol 2021; 38:1943-1965. [PMID: 33399875 PMCID: PMC8097292 DOI: 10.1093/molbev/msaa336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although centromeres have conserved function, centromere-specific histone H3 (CenH3) and centromeric DNA evolve rapidly. The centromere drive model explains this phenomenon as a consequence of the conflict between fast-evolving DNA and CenH3, suggesting asymmetry in female meiosis as a crucial factor. We characterized evolution of the CenH3 protein in three closely related, polyploid mitotic parthenogenetic species of the Meloidogyne incognita group, and in the distantly related meiotic parthenogen Meloidogyne hapla. We identified duplication of the CenH3 gene in a putative sexual ancestral Meloidogyne. We found that one CenH3 (αCenH3) remained conserved in all extant species, including in distant Meloidogyne hapla, whereas the other evolved rapidly and under positive selection into four different CenH3 variants. This pattern of CenH3 evolution in Meloidogyne species suggests the subspecialization of CenH3s in ancestral sexual species. Immunofluorescence performed on mitotic Meloidogyne incognita revealed a dominant role of αCenH3 on its centromere, whereas the other CenH3s have lost their function in mitosis. The observed αCenH3 chromosome distribution disclosed cluster-like centromeric organization. The ChIP-Seq analysis revealed that in M. incognita αCenH3-associated DNA dominantly comprises tandem repeats, composed of divergent monomers which share a completely conserved 19-bp long box. Conserved αCenH3-associated DNA is also confirmed in the related mitotic Meloidogyne incognita group species suggesting preservation of both centromere protein and DNA constituents. We hypothesize that the absence of centromere drive in mitosis might allow for CenH3 and its associated DNA to achieve an equilibrium in which they can persist for long periods of time.
Collapse
Affiliation(s)
| | | | - Saša Širca
- Agricultural Institute Slovenia, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
4
|
Vojvoda Zeljko T, Pavlek M, Meštrović N, Plohl M. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements. Sci Rep 2020; 10:15107. [PMID: 32934255 PMCID: PMC7492417 DOI: 10.1038/s41598-020-71886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.
Collapse
Affiliation(s)
- Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Martina Pavlek
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
5
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Gamba R, Fachinetti D. From evolution to function: Two sides of the same CENP-B coin? Exp Cell Res 2020; 390:111959. [DOI: 10.1016/j.yexcr.2020.111959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
7
|
Paço A, Freitas R, Vieira-da-Silva A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes (Basel) 2019; 10:E1014. [PMID: 31817529 PMCID: PMC6947457 DOI: 10.3390/genes10121014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a "DNA remodeling mechanism". The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.
Collapse
Affiliation(s)
- Ana Paço
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| | - Renata Freitas
- IBMC-Institute for Molecular and Cell Biology, University of Porto, R. Campo Alegre 823, 4150–180 Porto, Portugal;
- I3S-Institute for Innovation and Health Research, University of Porto, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Vieira-da-Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7002–554 Évora, Portugal;
| |
Collapse
|
8
|
Bronkhorst AJ, Wentzel JF, Ungerer V, Peters DL, Aucamp J, de Villiers EP, Holdenrieder S, Pretorius PJ. Sequence analysis of cell-free DNA derived from cultured human bone osteosarcoma (143B) cells. Tumour Biol 2018; 40:1010428318801190. [PMID: 30261820 DOI: 10.1177/1010428318801190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The true importance of cell-free DNA in human biology, together with the potential scale of its clinical utility, is tarnished by a lack of understanding of its composition and origin. In investigating the cell-free DNA present in the growth medium of cultured 143B cells, we previously demonstrated that the majority of cell-free DNA is neither a product of apoptosis nor necrosis. In the present study, we investigated the composition and origin of this cell-free DNA population using next-generation sequencing. We found that the cell-free DNA comprises mainly of repetitive DNA, including α-satellite DNA, mini satellites, and transposons that are currently active or exhibit the capacity to become reactivated. A significant portion of these cell-free DNA fragments originates from specific chromosomes, especially chromosomes 1 and 9. In healthy adult somatic cells, the centromeric and pericentromeric regions of these chromosomes are normally densely methylated. However, in many cancer types, these regions are preferentially hypomethylated. This can lead to double-stranded DNA breaks or it can directly impair the formation of proper kinetochore structures. This type of chromosomal instability is a precursor to the formation of nuclear anomalies, including lagging chromosomes and anaphase bridges. DNA fragments derived from these structures can recruit their own nuclear envelope and form secondary nuclear structures known as micronuclei, which can localize to the nuclear periphery and bud out from the membrane. We postulate that the majority of cell-free DNA present in the growth medium of cultured 143B cells originates from these micronuclei.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Johannes F Wentzel
- 2 Centre of Excellence for Nutrition (CEN), North-West University, Potchefstroom, South Africa
| | - Vida Ungerer
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Dimetrie L Peters
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- 4 Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Stefan Holdenrieder
- 1 Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Piet J Pretorius
- 3 Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Šatović E, Vojvoda Zeljko T, Plohl M. Characteristics and evolution of satellite DNA sequences in bivalve mollusks. THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1443164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- E. Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - T. Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - M. Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
García-Souto D, Mravinac B, Šatović E, Plohl M, Morán P, Pasantes JJ. Methylation profile of a satellite DNA constituting the intercalary G+C-rich heterochromatin of the cut trough shell Spisula subtruncata (Bivalvia, Mactridae). Sci Rep 2017; 7:6930. [PMID: 28761142 PMCID: PMC5537241 DOI: 10.1038/s41598-017-07231-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Tandemly repeated DNAs usually constitute significant portions of eukaryotic genomes. In bivalves, however, repetitive DNAs are habitually not widespread. In our search for abundant repetitive DNAs in trough shells, we discovered a novel satellite DNA, SSUsat, which constitutes at least 1.3% of the genome of Spisula subtruncata. As foreseen by the satellite DNA library hypothesis, we confirmed that this satellite DNA is also present in two other Mactridae species, showing a highly conserved nucleotide sequence together with a dramatic diminution in the number of repeats. Predominantly located at the G + C-rich intercalary heterochromatin of S. subtruncata, SSUsat displays several DNA methylation peculiarities. The level of methylation of SSUsat is high (3.38%) in comparison with bivalve standards and triplicates the mean of the S. subtruncata genome (1.13%). Methylation affects not only the cytosines in CpG dinucleotides but also those in CHH and CHG trinucleotides, a feature common in plants but scarce and without any clear known relevance in animals. SSUsat segments enriched in methylated cytosines partly overlap those showing higher sequence conservation. The presence of a chromosome pair showing an accumulation of markedly under-methylated SSUsat monomers additionally indicates that the methylation processes that shape repetitive genome compartments are quite complex.
Collapse
Affiliation(s)
- Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain
| | - Brankica Mravinac
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Paloma Morán
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain
| | - Juan J Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain.
| |
Collapse
|
11
|
Chen Q, Tan B, He JL, Liu XQ, Chen XM, Gao RF, Zhu J, Wang YX, Qi HB. Mutational spectrum of CENP-B box and α-satellite DNA on chromosome 21 in Down syndrome children. Mol Med Rep 2017; 15:2313-2317. [PMID: 28259924 DOI: 10.3892/mmr.2017.6247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
The centromere is responsible for the correct inheritance of eukaryotic chromosomes during cell division. Centromere protein B (CENP‑B) and its 17 base pair binding site (CENP‑B box), which appears at regular intervals in centromeric α-satellite DNA (α-satDNA), are important for the assembly of the centromere components. Therefore, it is conceivable that CENP-B box mutations may induce errors in cell division. However, the association between the deoxynucleotide alterations of the CENP‑B box and the extra chromosome 21 (Chr21) present in patients with Down syndrome (DS) remains to be elucidated. The mutational spectrum of the α‑satDNA, including 4 functional CENP‑B boxes in Chr21 from 127 DS and 100 healthy children were analyzed by direct sequencing. The de novo occurrences of mutations within CENP‑B boxes in patients with DS were excluded. The prevalence of 6 novel mutations (g.661delC, g.1035_1036insA, g.1076_1077insC, g.670T>G, g.1239A>T, g.1343T>C) and 3 single nucleotide polymorphisms (g.727C/T, g.863A/C, g.1264C/G) were not significantly different between DS and controls (P>0.05). However, g.525C/G (P=0.01), g.601T/C (P=0.00000002), g.1279A/G (P=0.002), g.1294C/T (P=0.0006) and g.1302 G/T (P=0.004) were significantly associated with the prevalence of DS (P<0.05). The results indicated that CENP‑B boxes are highly conserved in DS patients and may not be responsible for Chr21 nondisjunction events. However, α‑satDNA in Chr21 is variable and deoxynucleotide deletions, mutations and polymorphisms may act as potential molecular diagnostic markers of DS.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Tan
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Jun-Lin He
- Laboratory of Reproductive Biology, Public Health College, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Qing Liu
- Laboratory of Reproductive Biology, Public Health College, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Mei Chen
- Laboratory of Reproductive Biology, Public Health College, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ru-Fei Gao
- Laboratory of Reproductive Biology, Public Health College, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Zhu
- Pediatrics Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Ying-Xiong Wang
- Laboratory of Reproductive Biology, Public Health College, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong-Bo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
12
|
Dumont M, Fachinetti D. DNA Sequences in Centromere Formation and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:305-336. [PMID: 28840243 DOI: 10.1007/978-3-319-58592-5_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Faithful chromosome segregation during cell division depends on the centromere, a complex DNA/protein structure that links chromosomes to spindle microtubules. This chromosomal domain has to be marked throughout cell division and its chromosomal localization preserved across cell generations. From fission yeast to human, centromeres are established on a series of repetitive DNA sequences and on specialized centromeric chromatin. This chromatin is enriched with the histone H3 variant, named CENP-A, that was demonstrated to be the epigenetic mark that maintains centromere identity and function indefinitely. Although centromere identity is thought to be exclusively epigenetic, the presence of specific DNA sequences in the majority of eukaryotes and of the centromeric protein CENP-B that binds to these sequences, suggests the existence of a genetic component as well. In this review, we will highlight the importance of centromeric sequences for centromere formation and function, and discuss the centromere DNA sequence/CENP-B paradox.
Collapse
Affiliation(s)
- M Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
13
|
Satović E, Vojvoda Zeljko T, Luchetti A, Mantovani B, Plohl M. Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics 2016; 17:997. [PMID: 27919246 PMCID: PMC5139131 DOI: 10.1186/s12864-016-3347-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/25/2016] [Indexed: 11/14/2022] Open
Abstract
Background Satellite DNA (satDNA) sequences are typically arranged as arrays of tandemly repeated monomers. Due to the similarity among monomers, their organizational pattern and abundance, satDNAs are hardly accessible to structural and functional studies and still represent the most obscure genome component. Although many satDNA arrays of diverse length and even single monomers exist in the genome, surprisingly little is known about transition from satDNAs to other sequences. Studying satDNA monomers at junctions and identifying DNA sequences adjacent to them can help to understand the processes that (re)distribute satDNAs and significance that evolution of these sequence elements might have in creating the genomic landscape. Results We explored sets of randomly selected satDNA-harboring genomic fragments in four mollusc species to examine satDNA transition sites, and the nature of adjacent sequences. All examined junctions are characterized by abrupt transitions from satDNAs to other sequences. Among them, junctions of only one examined satDNA mapped non-randomly (within the palindrome), indicating that well-defined sequence feature is not a necessary prerequisite in the junction formation. In the studied sample, satDNA flanking sequences can be roughly classified into two groups. The first group is composed of anonymous DNA sequences which occasionally include short segments of transposable elements (TEs) as well as segments of other satDNA sequences. In the second group, satDNA repeats and the array flanking sequences are identified as parts of TEs of the Helitron superfamily. There, some array flanking regions hold fragmented satDNA monomers alternating with anonymous sequences of comparable length as missing monomer parts, suggesting a process of sequence reorganization by a mechanism able to excise short monomer parts and replace them with unrelated sequences. Conclusions The observed architecture of satDNA transition sites can be explained as a result of insertion and/or recombination events involving short arrays of satDNA monomers and TEs, in combination with hypothetical transposition-related ability of satDNA monomers to be shuffled independently in the genome. We conclude that satDNAs and TEs can form a complex network of sequences which essentially share the propagation mechanisms and in synergy shape the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3347-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva Satović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Università di Bologna, Bologna, Italy
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
14
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
15
|
Meštrović N, Mravinac B, Pavlek M, Vojvoda-Zeljko T, Šatović E, Plohl M. Structural and functional liaisons between transposable elements and satellite DNAs. Chromosome Res 2016; 23:583-96. [PMID: 26293606 DOI: 10.1007/s10577-015-9483-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transposable elements (TEs) and satellite DNAs (satDNAs) are typically identified as major repetitive DNA components in eukaryotic genomes. TEs are DNA segments able to move throughout a genome while satDNAs are tandemly repeated sequences organized in long arrays. Both classes of repetitive sequences are extremely diverse, and many TEs and satDNAs exist within a genome. Although they differ in structure, genomic organization, mechanisms of spread, and evolutionary dynamics, TEs and satDNAs can share sequence similarity and organizational patterns, thus indicating that complex mutual relationships can determine their evolution, and ultimately define roles they might have on genome architecture and function. Motivated by accumulating data about sequence elements that incorporate features of both TEs and satDNAs, here we present an overview of their structural and functional liaisons.
Collapse
Affiliation(s)
| | | | - Martina Pavlek
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | | | - Eva Šatović
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design. PLoS Negl Trop Dis 2016; 10:e0004578. [PMID: 27027771 PMCID: PMC4814118 DOI: 10.1371/journal.pntd.0004578] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. METHODOLOGY/PRINCIPAL FINDINGS Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. CONCLUSIONS/SIGNIFICANCE The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
Collapse
|
17
|
Subirana JA, Albà MM, Messeguer X. High evolutionary turnover of satellite families in Caenorhabditis. BMC Evol Biol 2015; 15:218. [PMID: 26438045 PMCID: PMC4595182 DOI: 10.1186/s12862-015-0495-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background The high density of tandem repeat sequences (satellites) in nematode genomes and the availability of genome sequences from several species in the group offer a unique opportunity to better understand the evolutionary dynamics and the functional role of these sequences. We take advantage of the previously developed SATFIND program to study the satellites in four Caenorhabditis species and investigate these questions. Methods The identification and comparison of satellites is carried out in three steps. First we find all the satellites present in each species with the SATFIND program. Each satellite is defined by its length, number of repeats, and repeat sequence. Only satellites with at least ten repeats are considered. In the second step we build satellite families with a newly developed alignment program. Satellite families are defined by a consensus sequence and the number of satellites in the family. Finally we compare the consensus sequence of satellite families in different species. Results We give a catalog of individual satellites in each species. We have also identified satellite families with a related sequence and compare them in different species. We analyze the turnover of satellites: they increased in size through duplications of fragments of 100-300 bases. It appears that in many cases they have undergone an explosive expansion. In C. elegans we have identified a subset of large satellites that have strong affinity for the centromere protein CENP-A. We have also compared our results with those obtained from other species, including one nematode and three mammals. Conclusions Most satellite families found in Caenorhabditis are species-specific; in particular those with long repeats. A subset of these satellites may facilitate the formation of kinetochores in mitosis. Other satellite families in C. elegans are either related to Helitron transposons or to meiotic pairing centers. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0495-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain. .,Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB) - Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Dr. Aiguader 86, Barcelona, 08003, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 31, Barcelona, 08034, Spain.
| |
Collapse
|
18
|
Centromere identity from the DNA point of view. Chromosoma 2014; 123:313-25. [PMID: 24763964 PMCID: PMC4107277 DOI: 10.1007/s00412-014-0462-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
The centromere is a chromosomal locus responsible for the faithful segregation of genetic material during cell division. It has become evident that centromeres can be established literally on any DNA sequence, and the possible synergy between DNA sequences and the most prominent centromere identifiers, protein components, and epigenetic marks remains uncertain. However, some evolutionary preferences seem to exist, and long-term established centromeres are frequently formed on long arrays of satellite DNAs and/or transposable elements. Recent progress in understanding functional centromere sequences is based largely on the high-resolution DNA mapping of sequences that interact with the centromere-specific histone H3 variant, the most reliable marker of active centromeres. In addition, sequence assembly and mapping of large repetitive centromeric regions, as well as comparative genome analyses offer insight into their complex organization and evolution. The rapidly advancing field of transcription in centromere regions highlights the functional importance of centromeric transcripts. Here, we comprehensively review the current state of knowledge on the composition and functionality of DNA sequences underlying active centromeres and discuss their contribution to the functioning of different centromere types in higher eukaryotes.
Collapse
|
19
|
Abstract
Two distinct classes of repetitive sequences, interspersed mobile elements and satellite DNAs, shape eukaryotic genomes and drive their evolution. Short arrays of tandem repeats can also be present within nonautonomous miniature inverted repeat transposable elements (MITEs). In the clam Donax trunculus, we characterized a composite, high copy number MITE, named DTC84. It is composed of a central region built of up to five core repeats linked to a microsatellite segment at one array end and flanked by sequences holding short inverted repeats. The modular composition and the conserved putative target site duplication sequence AA at the element termini are equivalent to the composition of several elements found in the cupped oyster Crassostrea virginica and in some insects. A unique feature of D. trunculus element is ordered array of core repeat variants, distinctive by diagnostic changes. Position of variants in the array is fixed, regardless of alterations in the core repeat copy number. Each repeat harbors a palindrome near the junction with the following unit, being a potential hotspot responsible for array length variations. As a consequence, variations in number of tandem repeats and variations in flanking sequences make every sequenced element unique. Core repeats may be thus considered as individual units within the MITE, with flanking sequences representing a "cassette" for internal repeats. Our results demonstrate that onset and spread of tandem repeats can be more intimately linked to processes of transposition than previously thought and suggest that genomes are shaped by interplays within a complex network of repetitive sequences.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|