1
|
Bufan B, Ćuruvija I, Blagojević V, Grujić-Milanović J, Prijić I, Radosavljević T, Samardžić J, Radosavljevic M, Janković R, Djuretić J. NMDA Receptor Antagonist Memantine Ameliorates Experimental Autoimmune Encephalomyelitis in Aged Rats. Biomedicines 2024; 12:717. [PMID: 38672073 PMCID: PMC11047843 DOI: 10.3390/biomedicines12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Ćuruvija
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Veljko Blagojević
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivana Prijić
- Department of Research and Development, Institute of Virology, Vaccines and Sera, Torlak, 11000 Belgrade, Serbia; (I.Ć.); (V.B.); (I.P.)
| | - Tatjana Radosavljević
- Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Radmila Janković
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Kamyshna II, Pavlovych LB, Kamyshnyi AM. Association between NMDA gene polymorphism (rs4880213) and GRIN2B blood serum levels in thyroid pathology patients. J Med Life 2022; 15:109-116. [PMID: 35186144 PMCID: PMC8852646 DOI: 10.25122/jml-2021-0372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
The article discusses a new hypothesis that autoimmune diseases of the thyroid gland can lead to depression and neurological complications. It is believed that the neuronal N-methyl-D-aspartate receptor plays a significant role in depression pathophysiology and neurological and mental diseases, respectively. The study involved 153 patients with various forms of thyroid pathology. GRIN2B levels in the sera of the patients and healthy individuals were quantified using enzyme-linked immunosorbent assay with highly sensitive Human GRIN2B (Glutamate Receptor, Ionotropic, N-Methyl-D-Aspartate 2B) ELISA Kit. Genotyping of the glutamate ionotropic receptor NMDA type subunit 1, GRIN1 (rs4880213) gene polymorphism. The CT genotype of the NMDA gene (rs4880213) was predominant in the surveyed population. The C allele of the NMDA gene was more frequent than the T allele among patients with thyroid disease. GRIN2B levels were significantly decreased in patients with postoperative hypothyroidism 3.45 times, and in patients with AIT-induced hypothyroidism, there was a probable increase in GRIN2B levels by 1.58 times compared with controls. GRIN2B levels were significantly different in patients of different groups depending on thyroid pathology. Our study showed direct close correlation (r=0.635) between GRIN2B and anti-TPO levels (p<0.001), a significant direct close correlation (r=0.527) between GRIN2B and anti-TG levels in the blood (p<0.001). Our results allow us to consider the GRIN2B level as an important prognostic minimally invasive marker of neurological complications in endocrine pathology.
Collapse
Affiliation(s)
- Iryna Ivanivna Kamyshna
- Department of Medical Rehabilitation, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine,* Corresponding Author: Iryna Ivanivna Kamyshna, Department of Medical Rehabilitation, Ivan Horbachevsky Ternopil National Medical University, Majdan Voli 1, Ternopil, Ukraine, 46001. E-mail:
| | - Larysa Borysivna Pavlovych
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | | |
Collapse
|
3
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Pellegrini M, Zoghi M, Jaberzadeh S. Genetic Polymorphisms Do Not Predict Interindividual Variability to Cathodal Transcranial Direct Current Stimulation of the Primary Motor Cortex. Brain Connect 2020; 11:56-72. [PMID: 33198509 DOI: 10.1089/brain.2020.0762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: High variability between individuals (i.e., interindividual variability) in response to transcranial direct current stimulation (tDCS) has become a commonly reported issue in the tDCS literature in recent years. Inherent genetic differences between individuals have been proposed as a contributing factor to observed response variability. This study investigated whether tDCS interindividual variability was genetically mediated. Methods: A large sample size of 61 healthy males received cathodal tDCS (c-tDCS) and sham-tDCS of the primary motor cortex at 1 mA and 10 min via 6 × 4 cm active and 7 × 5 cm return electrodes. Corticospinal excitability (CSE) was assessed via 25 single-pulse transcranial magnetic stimulation motor-evoked potentials (MEPs). Intracortical inhibition was assessed via twenty-five 3 msec interstimulus interval (ISI) paired-pulse MEPs, known as short-interval intracortical inhibition (SICI). Intracortical facilitation (ICF) was assessed via twenty-five 10 msec ISI paired-pulse MEPs. Gene variants encoding for excitatory and inhibitory neuroreceptors were determined via saliva samples. Predetermined thresholds and statistical cluster analyses were used to subgroup individuals. Results: Two distinct subgroups were identified, "responders" reducing CSE following c-tDCS and "nonresponders" showing no reduction or even increase in CSE. Differences in CSE between responders and nonresponders following c-tDCS were not explained by changes in SICI or ICF. Conclusions: No significant relationships were reported between gene variants and interindividual variability to c-tDCS, suggesting that the chosen gene variants did not influence the activity of the neuroreceptors involved in eliciting changes in CSE in responders following c-tDCS. In this largest c-tDCS study of its kind, novel insights were reported into the contribution genetic factors may play in observed interindividual variability to c-tDCS. Impact statement This study adds insight into the issue of interindividual variability to c-tDCS. It highlights not all individuals respond to c-tDCS similarly when exposed to the same stimulus parameters. This disparity in response to c-tDCS between individuals does not appear to be genetically mediated. For c-tDCS to progress to large-scale clinical application, reliability, predictability and reproducibility are essential. Systematically investigating factors contributing to interindividual variability take steps towards this progress the c-tDCS field towards the potential development of screening tools to determine clinical suitability to c-tDCS to ensure its application in those who may benefit the most.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Beutel T, Dzimiera J, Kapell H, Engelhardt M, Gass A, Schirmer L. Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1211-1224. [PMID: 33103501 DOI: 10.1080/14728222.2020.1842358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous system associated with lesions of the cortical gray matter and subcortical white matter. Recently, cortical lesions have become a major focus of research because cortical pathology and neuronal damage are critical determinants of irreversible clinical progression. Recent transcriptomic studies point toward cell type-specific changes in cortical neurons in MS with a selective vulnerability of excitatory projection neuron subtypes. AREAS COVERED We discuss the cortical mapping and the molecular properties of excitatory projection neurons and their role in MS lesion pathology while placing an emphasis on their subtype-specific transcriptomic changes and levels of vulnerability. We also examine the latest magnetic resonance imaging techniques to study cortical MS pathology as a key tool for monitoring disease progression and treatment efficacy. Finally, we consider possible therapeutic avenues and novel strategies to protect excitatory cortical projection neurons. Literature search methodology: PubMed articles from 2000-2020. EXPERT OPINION Excitatory cortical projection neurons are an emerging therapeutic target in the treatment of progressive MS. Understanding neuron subtype-specific molecular pathologies and their exact spatial mapping will help establish starting points for the development of novel cell type-specific therapies and biomarkers in MS.
Collapse
Affiliation(s)
- Tatjana Beutel
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Julia Dzimiera
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
6
|
Pellegrini M, Zoghi M, Jaberzadeh S. Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex? Eur J Neurosci 2020; 53:1569-1591. [PMID: 33048398 DOI: 10.1111/ejn.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 11/28/2022]
Abstract
Genetic mediation of cortical plasticity and the role genetic variants play in previously observed response variability to transcranial direct current stimulation (tDCS) have become important issues in the tDCS literature in recent years. This study investigated whether inter-individual variability to tDCS was in-part genetically mediated. In 61 healthy males, anodal-tDCS (a-tDCS) and sham-tDCS were administered to the primary motor cortex at 1 mA for 10-min via 6 × 4 cm active and 7 × 5 cm return electrodes. Twenty-five single-pulse transcranial magnetic stimulation (TMS) motor evoked potentials (MEP) were recorded to represent corticospinal excitability (CSE). Twenty-five paired-pulse MEPs were recorded with 3 ms inter-stimulus interval (ISI) to assess intracortical inhibition (ICI) via short-interval intracranial inhibition (SICI) and 10 ms ISI for intracortical facilitation (ICF). Saliva samples were tested for specific genetic polymorphisms in genes encoding for excitatory and inhibitory neuroreceptors. Individuals were sub-grouped based on a pre-determined threshold and via statistical cluster analysis. Two distinct subgroups were identified, increases in CSE following a-tDCS (i.e. Responders) and no increase or even reductions in CSE (i.e. Non-responders). No changes in ICI or ICF were reported. No relationships were reported between genetic polymorphisms in excitatory receptor genes and a-tDCS responders. An association was reported between a-tDCS responders and GABRA3 gene polymorphisms encoding for GABA-A receptors suggesting potential relationships between GABA-A receptor variations and capacity to undergo tDCS-induced cortical plasticity. In the largest tDCS study of its kind, this study presents an important step forward in determining the contribution genetic factors play in previously observed inter-individual variability to tDCS.
Collapse
Affiliation(s)
- Michael Pellegrini
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Ewing E, Kular L, Fernandes SJ, Karathanasis N, Lagani V, Ruhrmann S, Tsamardinos I, Tegner J, Piehl F, Gomez-Cabrero D, Jagodic M. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. EBioMedicine 2019; 43:411-423. [PMID: 31053557 PMCID: PMC6558224 DOI: 10.1016/j.ebiom.2019.04.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background Multiple Sclerosis (MS) is a chronic inflammatory disease and a leading cause of progressive neurological disability among young adults. DNA methylation, which intersects genes and environment to control cellular functions on a molecular level, may provide insights into MS pathogenesis. Methods We measured DNA methylation in CD4+ T cells (n = 31), CD8+ T cells (n = 28), CD14+ monocytes (n = 35) and CD19+ B cells (n = 27) from relapsing-remitting (RRMS), secondary progressive (SPMS) patients and healthy controls (HC) using Infinium HumanMethylation450 arrays. Monocyte (n = 25) and whole blood (n = 275) cohorts were used for validations. Findings B cells from MS patients displayed most significant differentially methylated positions (DMPs), followed by monocytes, while only few DMPs were detected in T cells. We implemented a non-parametric combination framework (omicsNPC) to increase discovery power by combining evidence from all four cell types. Identified shared DMPs co-localized at MS risk loci and clustered into distinct groups. Functional exploration of changes discriminating RRMS and SPMS from HC implicated lymphocyte signaling, T cell activation and migration. SPMS-specific changes, on the other hand, implicated myeloid cell functions and metabolism. Interestingly, neuronal and neurodegenerative genes and pathways were also specifically enriched in the SPMS cluster. Interpretation We utilized a statistical framework (omicsNPC) that combines multiple layers of evidence to identify DNA methylation changes that provide new insights into MS pathogenesis in general, and disease progression, in particular. Fund This work was supported by the Swedish Research Council, Stockholm County Council, AstraZeneca, European Research Council, Karolinska Institutet and Margaretha af Ugglas Foundation.
Collapse
Affiliation(s)
- Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sunjay J Fernandes
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17177, Sweden; Science for Life Laboratory, Solna, Sweden
| | - Nestoras Karathanasis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece; Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia; Gnosis Data Analysis PC, Heraklion, Greece
| | - Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ioannis Tsamardinos
- Gnosis Data Analysis PC, Heraklion, Greece; Department of Computer Science, University of Crete, Heraklion, Greece
| | - Jesper Tegner
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17177, Sweden; Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia; Science for Life Laboratory, Solna, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17177, Sweden; Center for Neurology, Academic Specialist Clinic, Stockholm Health Services, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, 17177, Sweden; Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, UK
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
8
|
Abdel Naseer M, Fathi S, Roshdy NK, Labib DM, Khalil DH, Ibrahim W, Magdy R. Cognitive and physical disability in Egyptian patients with multiple sclerosis: genetic and optical coherence tomography study. Neurol Res 2019; 41:644-651. [PMID: 31025605 DOI: 10.1080/01616412.2019.1609203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: The aim of this study was to explore the relationship between cognitive dysfunction, neurodegeneration, and genetic factors among multiple sclerosis (MS) patients. Methods: Fifty patients of definite MS were included. Physical disability was assessed by expanded disability status scale (EDSS). Cognitive functions were assessed by using the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). For each eye, optical coherence tomography (OCT) was used to track thickness of retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC), respecting the previous history of optic neuritis (ON). All patients were genotyped for glutamate N-methyl-D-aspartate receptors (NMDARs). Results: A statistically significant negative correlation was found between scores of EDSS and each of neuropsychological tests scores and thickness of both RNFL and GCC. The predictor for progressive disability assessed by EDSS was Symbol Digit Modalities Test (SDMT) (P = 0.021), that is dependent on the educational level of the patients (P = 0.016). A statistically significant positive correlation was found between scores of all neuropsychological tests and the thickness of both RNFL and GCC. Eighty-three percent of MS patients with CC genotype reported previous attacks of ON with significant thinning in RNFL and GCC despite their higher cognitive performance in comparison to other genotypes. Discussion: Deficit in information processing speed measured by SDMT is a predictor of early progressive disability in MS patients. Thinning of RNFL and GCC is a potential biomarker for cognitive and physical disability in MS. The CC genotype of glutamate NMDAR gene has a divergent effect on visual and cognitive functions.
Collapse
Affiliation(s)
- Maged Abdel Naseer
- a Department of Neurology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Shereen Fathi
- a Department of Neurology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Nagwa K Roshdy
- b Department of Medical Biochemistry and Molecular Biology , Future University , Khartoum , Egypt
| | - Dalia M Labib
- a Department of Neurology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Dalia H Khalil
- c Department of Ophthalmology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Walaa Ibrahim
- d Department of Medical Biochemistry, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Rehab Magdy
- a Department of Neurology, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
9
|
Association of SHMT1, MAZ, ERG, and L3MBTL3 Gene Polymorphisms with Susceptibility to Multiple Sclerosis. Biochem Genet 2018; 57:355-370. [PMID: 30456721 DOI: 10.1007/s10528-018-9894-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory and chronic disease of the central nervous system (CNS). A complex interaction between genetic, environmental, and epigenetic factors is involved in the pathogenesis of MS. With the advancement of GWAS, various variants associated with MS have been identified. This study aimed to evaluate the association of single-nucleotide polymorphisms (SNPs) rs4925166 and rs1979277 in the SHMT1, MAZ rs34286592, ERG rs2836425, and L3MBTL3 rs4364506 with MS. In this case-control study, the association of five SNPs in SHMT1, MAZ, ERG, and L3MBTL3 genes with relapsing-remitting MS (RR-MS) was investigated in 190 patients and 200 healthy individuals. Four SNPs including SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and L3MBTL3 rs4364506 were genotyped using PCR-RFLP and genotyping of ERG rs2836425 was performed by tetra-primer ARMS PCR. Our findings showed a significant difference in the allelic frequencies for the four SNPs of SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and ERG rs2836425, while there were no differences in the allele and genotype frequencies for L3MBTL3 rs4364506. These significant associations were observed for the following genotypes: TT and GG genotypes of SHMT1 rs4925166 (OR 0.47 and 1.90, respectively) genotype GG of SHMT1 rs1979277 (OR 0.63), genotype GG of MAZ rs34286592 (OR 0.61), TC and CC genotypes of ERG rs2836425 (OR 1.89 and 0.50, respectively). Our study highlighted that people who are carrying genotypes including GG (SHMT1 rs4925166) and TC (ERG rs2836425) have the highest susceptibility chance for MS, respectively. However, genotypes TT (SHMT1 rs4925166), CC (ERG rs2836425), GG (MAZ rs34286592), and GG (SHMT1 rs1979277) had the highest negative association (protective effect) with MS, respectively. L3MBTL3 rs4364506 was found neither as a predisposing nor a protective variant.
Collapse
|
10
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
11
|
Fingolimod reduces the clinical expression of active demyelinating lesions in MS. Mult Scler Relat Disord 2018; 20:215-219. [PMID: 29433094 DOI: 10.1016/j.msard.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/12/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fingolimod is a modulator of Central and peripheral sphingosine pathways, which is currently approved for treatment of Multiple Sclerosis (MS). In animal models it reduces inflammation, but it is also able to potentiate glutamatergic transmission and synaptic plasticity. We aimed to explore whether Fingolimod is able to modify the clinical expression of new demyelinating lesions with respect to IFNβ-1a in relapsing remitting MS (RRMS) patients suboptimal responders to IFNβ-1a. METHODS 103 patients with RRMS switching for inefficacy from IFNβ-1a to Fingolimod and treated for at least 12 months were included. Annualised Relapse Rate (ARR), EDSS and the number of new brain and spinal gadolinium enhancing (Gd +) and T2 lesions were retrospectively assessed in the whole group during each treatment period. The likelihood of co-occurrence of new Gd + lesions and clinical relapses during IFNβ-1a and Fingolimod treatment was analysed. RESULTS The mean duration of treatment with IFNβ-1a and Fingolimod was 3.14 (SD 1.6) and 3.22 years (SD 1.1) respectively. Significant reduction of ARR (p < .001), total number of Gd + and T2 lesions (p < .001) was found switching from IFNβ-1a to Fingolimod. Gd + lesions occurring during treatment with Fingolimod were more likely to be asymptomatic compared with IFNβ-1a (88% vs 30.9%, p = < .025). CONCLUSION Fingolimod reduces clinical and radiological inflammation in MS. Additionally, it limits the clinical expression of new Gd + lesions, possibly reducing local inflammatory processes and improving brain network plasticity in patients with suboptimal response to IFNβ-1a.
Collapse
|
12
|
Cohen JA, Hunter SF, Brown TR, Gudesblatt M, Thrower BW, Llorens L, Souza-Prien CJ, Ruby AE, Chernoff DN, Patni R. Safety and efficacy of ADS-5102 (amantadine) extended release capsules to improve walking in multiple sclerosis: A randomized, placebo-controlled, phase 2 trial. Mult Scler 2018; 25:601-609. [PMID: 29368539 DOI: 10.1177/1352458518754716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Walking impairment causes disability and reduced quality of life in patients with multiple sclerosis (MS). OBJECTIVE Characterize the safety and efficacy of ADS-5102 (amantadine) extended release capsules, 274 mg administered once daily at bedtime in patients with MS with walking impairment. METHODS This randomized, double-blind, placebo-controlled, 4-week study was conducted at 14 trial sites in the United States. Study objectives included safety and tolerability of ADS-5102, and efficacy assessments (Timed 25-Foot Walk (T25FW), Timed Up and Go (TUG), 2-Minute Walk Test, and Multiple Sclerosis Walking Scale-12). Fatigue, depression, and cognition also were assessed. RESULTS A total of 60 patients were randomized (30 to ADS-5102 and 30 to placebo); 59 of whom were treated. The most frequent adverse events (AEs) were dry mouth, constipation, and insomnia. Five ADS-5102 patients and no placebo patients discontinued treatment due to AEs. One patient in the ADS-5102 group experienced a serious AE-suspected serotonin syndrome. A 16.6% placebo-adjusted improvement was seen in the T25FW test ( p < 0.05). A 10% placebo-adjusted improvement in TUG was also observed. No changes in fatigue, depression, or cognition were observed. CONCLUSION ADS-5102 was generally well tolerated. These data demonstrate an effect of ADS-5102 on walking speed. Further studies are warranted to confirm these observations.
Collapse
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Mark Gudesblatt
- Comprehensive Multiple Sclerosis Care Center, South Shore Neurologic Associates, P.C., Patchogue, NY, USA
| | - Ben W Thrower
- Crawford Research Institute, Shepherd Center, Atlanta, GA, USA
| | - Lily Llorens
- Adamas Pharmaceuticals, Inc., Emeryville, CA, USA
| | | | - April E Ruby
- Adamas Pharmaceuticals, Inc., Emeryville, CA, USA
| | | | - Rajiv Patni
- Adamas Pharmaceuticals, Inc., Emeryville, CA, USA
| |
Collapse
|
13
|
Russo M, Cesqui B, La Scaleia B, Ceccarelli F, Maselli A, Moscatelli A, Zago M, Lacquaniti F, d'Avella A. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction. J Neurophysiol 2017; 118:2421-2434. [PMID: 28768737 DOI: 10.1152/jn.00025.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 11/22/2022] Open
Abstract
To accurately time motor responses when intercepting falling balls we rely on an internal model of gravity. However, whether and how such a model is also used to estimate the spatial location of interception is still an open question. Here we addressed this issue by asking 25 participants to intercept balls projected from a fixed location 6 m in front of them and approaching along trajectories with different arrival locations, flight durations, and gravity accelerations (0g and 1g). The trajectories were displayed in an immersive virtual reality system with a wide field of view. Participants intercepted approaching balls with a racket, and they were free to choose the time and place of interception. We found that participants often achieved a better performance with 1g than 0g balls. Moreover, the interception points were distributed along the direction of a 1g path for both 1g and 0g balls. In the latter case, interceptions tended to cluster on the upper half of the racket, indicating that participants aimed at a lower position than the actual 0g path. These results suggest that an internal model of gravity was probably used in predicting the interception locations. However, we found that the difference in performance between 1g and 0g balls was modulated by flight duration, the difference being larger for faster balls. In addition, the number of peaks in the hand speed profiles increased with flight duration, suggesting that visual information was used to adjust the motor response, correcting the prediction to some extent.NEW & NOTEWORTHY Here we show that an internal model of gravity plays a key role in predicting where to intercept a fast-moving target. Participants also assumed an accelerated motion when intercepting balls approaching in a virtual environment at constant velocity. We also show that the role of visual information in guiding interceptive movement increases when more time is available.
Collapse
Affiliation(s)
- Marta Russo
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy;
| | - Benedetta Cesqui
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Antonella Maselli
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Moscatelli
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; and
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
14
|
MicroRNA in glutamate receptor-dependent neurological diseases. Clin Sci (Lond) 2017; 131:1591-1604. [PMID: 28667061 DOI: 10.1042/cs20170964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023]
Abstract
Glutamate-mediated excitotoxicity is the major neuropathological process contributing to numerous neurological diseases. Recently, emerging evidence indicates that microRNAs (miRNAs) play essential roles in the pathophysiology of a wide range of neurological diseases. Notably, there have been significant developments in understanding the biogenesis of miRNAs, their regulatory mechanisms, and their potential as effective biomarkers and therapies. In the present review, we summarize the recent literature that highlights the versatile roles played by miRNAs in glutamate receptor (GluR)-dependent neurological diseases. Based on the reported studies to date, modulation of miRNAs could emerge as a promising therapeutic target for a variety of neurological diseases that were discussed in this review.
Collapse
|
15
|
Studer V, Rocchi C, Motta C, Lauretti B, Perugini J, Brambilla L, Pareja-Gutierrez L, Camera G, Barbieri FR, Marfia GA, Centonze D, Rossi S. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability. Mult Scler J Exp Transl Clin 2017; 3:2055217317701317. [PMID: 28607756 PMCID: PMC5408506 DOI: 10.1177/2055217317701317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/27/2017] [Indexed: 11/16/2022] Open
Abstract
Background Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. Objectives The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Methods Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Results Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing–remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing–remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing–remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Conclusions Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.
Collapse
Affiliation(s)
- Valeria Studer
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | - Camilla Rocchi
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | - Caterina Motta
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | | | - Jacopo Perugini
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Isitituto Neurologico Carlo Besta, Italy
| | - Laura Brambilla
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Isitituto Neurologico Carlo Besta, Italy
| | - Lorena Pareja-Gutierrez
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Isitituto Neurologico Carlo Besta, Italy
| | - Giorgia Camera
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Isitituto Neurologico Carlo Besta, Italy
| | | | | | - Diego Centonze
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Italy
| | - Silvia Rossi
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Fondazione Isitituto Neurologico Carlo Besta, Italy
| |
Collapse
|
16
|
Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol 2016; 15:1089-102. [PMID: 27571160 DOI: 10.1016/s1474-4422(16)30165-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
Abstract
Research advances support the idea that excessive activation of the glutamatergic pathway plays an important part in the pathophysiology of multiple sclerosis. Beyond the well established direct toxic effects on neurons, additional sites of glutamate-induced cell damage have been described, including effects in oligodendrocytes, astrocytes, endothelial cells, and immune cells. Such toxic effects could provide a link between various pathological aspects of multiple sclerosis, such as axonal damage, oligodendrocyte cell death, demyelination, autoimmunity, and blood-brain barrier dysfunction. Understanding of the mechanisms underlying glutamate toxicity in multiple sclerosis could help in the development of new approaches for diagnosis, treatment, and follow-up in patients with this debilitating disease. While several clinical trials of glutamatergic modulators have had disappointing results, our growing understanding suggests that there is reason to remain optimistic about the therapeutic potential of these drugs.
Collapse
Affiliation(s)
| | - Peter K Stys
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Denis Vivien
- INSERM U919, University of Caen Normandy, Caen, France
| | - Stuart A Lipton
- Scintillon Institute San Diego, CA, USA; Scripps Research Institute, La Jolla, CA, USA; School of Mecicine, University of California, San Diego, CA, USA
| | | |
Collapse
|
17
|
Kumar G, Patnaik R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Med Hypotheses 2016; 92:35-43. [PMID: 27241252 DOI: 10.1016/j.mehy.2016.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) mediated excitotoxicity has been implicated in multi-neurodegenerative diseases. Due to lack of efficacy and adverse effects of NMDA receptor antagonists, search for herbal remedies that may act as therapeutic agents is an active area of research to combat these diseases. Withania somnifera (WS) is being used for centuries as a nerve tonic and Nootropic agents. The present study targets the in silico evaluation of the neuroprotective efficacy of W. somnifera phytochemicals by inhibition of NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B containing NMDARs. We predict Blood Brain Barrier (BBB) penetration, mutagenicity, drug-likeness and Human Intestinal Absorption properties of 25 WS phytochemicals. Further, molecular docking was performed to know whether these phytochemicals inhibit the GluN2B containing NMDARs or not. The results suggest that Anaferine, Beta-Sitosterol, Withaferin A, Withanolide A, Withanolide B and Withanolide D inhibit GluN2B containing NMDARs through allosteric mode similar to the well-known selective antagonist Ifenprodil. These phytochemicals have potential as an essentially useful oral drug to counter NMDARs mediated excitotoxicity and to treat multi-neurodegenerative diseases.
Collapse
Affiliation(s)
- Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
18
|
Peyro Saint Paul L, Creveuil C, Heinzlef O, De Seze J, Vermersch P, Castelnovo G, Cabre P, Debouverie M, Brochet B, Dupuy B, Lebiez P, Sartori É, Clavelou P, Brassat D, Lebrun-Frenay C, Daplaud D, Pelletier J, Coman I, Hautecoeur P, Tourbah A, Defer G. Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: A randomized, placebo-controlled study. J Neurol Sci 2016; 363:69-76. [DOI: 10.1016/j.jns.2016.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
|
19
|
D'Amico E, Leone C, Hayrettin T, Patti F. Can we define a rehabilitation strategy for cognitive impairment in progressive multiple sclerosis? A critical appraisal. Mult Scler 2016; 22:581-9. [PMID: 26920381 DOI: 10.1177/1352458516632066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/17/2016] [Indexed: 01/25/2023]
Abstract
Cognitive impairment (CI) has been shown to be severe in patients with progressive forms of multiple sclerosis (MS), and the most frequently impaired domains are sustained attention, information processing speed, memory, and executive functions. In contrast to relapsing forms of MS, where studies have shown favorable results from cognitive rehabilitation, there is a lack of data on cognitive rehabilitation in progressive forms of MS. A specific approach in assessing CI and in designing and administering rehabilitation training for patients with progressive forms of MS is needed.
Collapse
Affiliation(s)
| | | | - Tumani Hayrettin
- Klinik und PoliklinikfürNeurologie der Universität Ulm, Ulm, Germany
| | | |
Collapse
|
20
|
Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents. Neural Plast 2015; 2016:6851592. [PMID: 26819771 PMCID: PMC4706971 DOI: 10.1155/2016/6851592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA) glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP) variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D) with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213) was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328) was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.
Collapse
|
21
|
Role of amyloid-β CSF levels in cognitive deficit in MS. Clin Chim Acta 2015; 449:23-30. [DOI: 10.1016/j.cca.2015.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
|
22
|
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background. Neural Plast 2015; 2015:307175. [PMID: 26229689 PMCID: PMC4503575 DOI: 10.1155/2015/307175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.
Collapse
|
23
|
T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17 in multiple sclerosis. Clin Sci (Lond) 2015; 129:291-303. [DOI: 10.1042/cs20140608] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have established a novel role in multiple sclerosis for a molecule, called IL-9, produced by immune cells. IL-9 reduces inflammation, and its expression in the cerebrospinal fluid of patients inversely correlates with the severity of multiple sclerosis.
Collapse
|
24
|
Krogh KA, Lyddon E, Thayer SA. HIV-1 Tat activates a RhoA signaling pathway to reduce NMDA-evoked calcium responses in hippocampal neurons via an actin-dependent mechanism. J Neurochem 2014; 132:354-66. [PMID: 25156524 DOI: 10.1111/jnc.12936] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
HIV-associated neurocognitive disorders afflict approximately half of HIV-infected patients. HIV-infected cells within the CNS release neurotoxic viral proteins such as the transactivator of transcription (Tat). Tat caused a biphasic change in NMDAR function; NMDA-evoked increases in intracellular Ca(2+) were initially potentiated following 16 h exposure to Tat and then adapted by gradually returning to baseline by 24 h. Following Tat-induced NMDAR potentiation, a RhoA/Rho-associated protein kinase (ROCK) signaling pathway was activated; a subsequent remodeling of the actin cytoskeleton reduced NMDA-evoked increases in intracellular Ca(2+) . Pharmacologic or genetic inhibition of RhoA or ROCK failed to affect potentiation, but prevented adaptation of NMDAR function. Activation of RhoA/ROCK signaling increases the formation of filamentous actin. Drugs that prevent changes to filamentous actin blocked adaptation of NMDAR function following Tat-induced potentiation, whereas stimulating either depolymerization or polymerization of actin attenuated NMDAR function. These findings indicate that Tat activates a RhoA/ROCK signaling pathway resulting in actin remodeling and subsequent reduction of NMDAR function. Adaptation of NMDAR function may be a mechanism to protect neurons from excessive Ca(2+) influx and could reveal targets for the treatment of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Kelly A Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
25
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
26
|
Krogh KA, Wydeven N, Wickman K, Thayer SA. HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca2+ concentration via activation of Src kinase and nitric oxide signaling pathways. J Neurochem 2014; 130:642-56. [PMID: 24666322 DOI: 10.1111/jnc.12724] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
HIV-associated neurocognitive disorders afflict about half of HIV-infected patients. HIV-infected cells shed viral proteins, such as the transactivator of transcription (Tat), which can cause neurotoxicity by over activation of NMDA receptors. Here, we show that Tat causes a time-dependent, biphasic change in NMDA-evoked increases in intracellular Ca(2+) concentration ([Ca(2+)]i). NMDA-evoked responses were potentiated following 2-h exposure to Tat (50 ng/mL). Tat-induced potentiation of NMDA-evoked increases in [Ca(2+)]i peaked by 8 h and then adapted by gradually reversing to baseline by 24 h and eventually dropping below control by 48 h. Tat-induced potentiation of NMDA-evoked responses was blocked by inhibition of lipoprotein receptor-related protein (LRP) or Src tyrosine kinase. Potentiation was unaffected by inhibition of nitric oxide synthase (NOS). However, NOS activity was required for adaptation. Adaptation was also prevented by inhibition of soluble guanylate cyclase (sGC) and cyclic guanosine monophosphate-dependent protein kinase G (PKG). Together, these findings indicate that Tat potentiates NMDA-evoked increases in [Ca(2+)]i via LRP-dependent activation of Src and that this potentiation adapts via activation of the NOS/sGC/PKG pathway. Adaptation may protect neurons from excessive Ca(2+) influx and could reveal targets for the treatment of HIV-associated neurocognitive disorders. HIV-associated neurocognitive disorders (HAND) afflict about half of HIV-infected patients. HIV-infected cells shed viral proteins, such as the transactivator of transcription (Tat), which can cause neurotoxicity by over activation of NMDA receptors (NMDARs). We show that HIV-1 Tat evoked biphasic changes in NMDA-evoked [Ca(2+) ]i responses. Initially, Tat potentiated NMDA-evoked responses following LRP-mediated activation of Src kinase. Subsequently, Tat-induced NMDAR potentiation adapted by activation of a NOS/sGC/PKG pathway that attenuated NMDA-evoked increases in [Ca(2+)]i . Adaptation may be a novel neuroprotective mechanism to prevent excessive Ca(2+) influx. Solid and dashed arrows represent direct and potentially indirect connections, respectively.
Collapse
Affiliation(s)
- Kelly A Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|