1
|
Dilani PVD, Dassanayake RS, Tyagi BK, Gunawardene YINS. The impact of transgenesis on mosquito fitness: A review. FRONTIERS IN INSECT SCIENCE 2022; 2:957570. [PMID: 38468772 PMCID: PMC10926467 DOI: 10.3389/finsc.2022.957570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 03/13/2024]
Abstract
Transgenic mosquitoes developed by genetic manipulation, offer a promising strategy for the sustainable and effective control of mosquito-borne diseases. This strategy relies on the mass release of transgenic mosquitoes into the wild, where their transgene is expected to persist in the natural environment, either permanently or transiently, within the mosquito population. In such circumstances, the fitness of transgenic mosquitoes is an important factor in determining their survival in the wild. The impact of transgene expression, insertional mutagenesis, inbreeding depression related to laboratory adaptation, and the hitchhiking effect involved in developing homozygous mosquito lines can all have an effect on the fitness of transgenic mosquitoes. Therefore, real-time estimation of transgene-associated fitness cost is imperative for modeling and planning transgenic mosquito release programs. This can be achieved by directly comparing fitness parameters in individuals homozygous or hemizygous for the transgene and their wild-type counterparts, or by cage invasion experiments to monitor the frequency of the transgenic allele over multiple generations. Recent advancements such as site-specific integration systems and gene drives, provide platforms to address fitness issues in transgenic mosquitoes. More research on the fitness of transgenic individuals is required to develop transgenic mosquitoes with a low fitness cost.
Collapse
Affiliation(s)
| | | | - Brij Kishore Tyagi
- Sponsored Research & Industrial Centre, VIT University, Vellore (TN), India
| | | |
Collapse
|
2
|
Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes. Nat Commun 2022; 13:796. [PMID: 35145082 PMCID: PMC8831579 DOI: 10.1038/s41467-022-28419-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex. Release of genetically-modified sterile mosquitoes is a potential method of malaria control but has yet to be tested in the field. Here, the authors perform a mark-release-recapture experiment and show that genetically-modified mosquitoes have reduced survival and dispersal compared to wild-types.
Collapse
|
3
|
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 2020; 13:295. [PMID: 32522290 PMCID: PMC7285743 DOI: 10.1186/s13071-020-04170-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Emmanuel Chinweuba Ottih
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| |
Collapse
|
4
|
Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii. G3-GENES GENOMES GENETICS 2015; 5:2693-709. [PMID: 26497140 PMCID: PMC4683642 DOI: 10.1534/g3.115.021436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health.
Collapse
|
5
|
Targeting male mosquito mating behaviour for malaria control. Parasit Vectors 2015; 8:347. [PMID: 26113015 PMCID: PMC4485859 DOI: 10.1186/s13071-015-0961-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
Malaria vector control relies heavily on the use of Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS). These, together with the combined drug administration efforts to control malaria, have reduced the death toll to less than 700,000 deaths/year. This progress has engendered real excitement but the emergence and spread of insecticide resistance is challenging our ability to sustain and consolidate the substantial gains that have been made. Research is required to discover novel vector control tools that can supplement and improve the effectiveness of those currently available. Here, we argue that recent and continuing progress in our understanding of male mating biology is instrumental in the implementation of new approaches based on the release of either conventional sterile or genetically engineered males. Importantly, further knowledge of male biology could also lead to the development of new interventions, such as sound traps and male mass killing in swarms, and contribute to new population sampling tools. We review and discuss recent advances in the behavioural ecology of male mating with an emphasis on the potential applications that can be derived from such knowledge. We also highlight those aspects of male mating ecology that urgently require additional study in the future.
Collapse
|
6
|
Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci U S A 2015; 112:4038-43. [PMID: 25775608 DOI: 10.1073/pnas.1502370112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24-90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2-3%, similar to traditional transposon- or ΦC31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems.
Collapse
|
7
|
Meza JS, Díaz-Fleischer F, Sánchez-Velásquez LR, Zepeda-Cisneros CS, Handler AM, Schetelig MF. Fitness cost implications of PhiC31-mediated site-specific integrations in target-site strains of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae). PLoS One 2014; 9:e109690. [PMID: 25303238 PMCID: PMC4193812 DOI: 10.1371/journal.pone.0109690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023] Open
Abstract
Site-specific recombination technologies are powerful new tools for the manipulation of genomic DNA in insects that can improve transgenesis strategies such as targeting transgene insertions, allowing transgene cassette exchange and DNA mobilization for transgene stabilization. However, understanding the fitness cost implications of these manipulations for transgenic strain applications is critical. In this study independent piggyBac-mediated attP target-sites marked with DsRed were created in several genomic positions in the Mexican fruit fly, Anastrepha ludens. Two of these strains, one having an autosomal (attP_F7) and the other a Y-linked (attP_2-M6y) integration, exhibited fitness parameters (dynamic demography and sexual competitiveness) similar to wild type flies. These strains were thus selected for targeted insertion using, for the first time in mexfly, the phiC31-integrase recombination system to insert an additional EGFP-marked transgene to determine its effect on host strain fitness. Fitness tests showed that the integration event in the int_2-M6y recombinant strain had no significant effect, while the int_F7 recombinant strain exhibited significantly lower fitness relative to the original attP_F7 target-site host strain. These results indicate that while targeted transgene integrations can be achieved without an additional fitness cost, at some genomic positions insertion of additional DNA into a previously integrated transgene can have a significant negative effect. Thus, for targeted transgene insertions fitness costs must be evaluated both previous to and subsequent to new site-specific insertions in the target-site strain.
Collapse
Affiliation(s)
- José S. Meza
- Programa Moscafrut, SAGARPA-IICA, Metapa de Domínguez, Chiapas, México
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Francisco Díaz-Fleischer
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Lázaro R. Sánchez-Velásquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | | | - Alfred M. Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, United States of America
| | - Marc F. Schetelig
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, United States of America
- Justus-Liebig-University Giessen, Institute for Phytopathology and Applied Zoology, Giessen, Germany
- * E-mail:
| |
Collapse
|
8
|
Harvey-Samuel T, Ant T, Gong H, Morrison NI, Alphey L. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects. Evol Appl 2014; 7:597-606. [PMID: 24944572 PMCID: PMC4055180 DOI: 10.1111/eva.12159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing ‘uncoupled’ gene drive system components in the field.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Department of Zoology, University of Oxford Oxford, UK ; Oxitec Ltd, Milton Park Oxford, UK
| | - Thomas Ant
- Department of Zoology, University of Oxford Oxford, UK ; Oxitec Ltd, Milton Park Oxford, UK
| | | | | | - Luke Alphey
- Department of Zoology, University of Oxford Oxford, UK ; Oxitec Ltd, Milton Park Oxford, UK
| |
Collapse
|
9
|
Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS One 2013; 8:e74511. [PMID: 23977401 PMCID: PMC3744473 DOI: 10.1371/journal.pone.0074511] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022] Open
Abstract
Anopheles gambiae, the main mosquito vector of human malaria, is a challenging organism to manipulate genetically. As a consequence, reverse genetics studies in this disease vector have been largely limited to RNA interference experiments. Here, we report the targeted disruption of the immunity gene TEP1 using transgenic expression of Transcription-Activator Like Effector Nucleases (TALENs), and the isolation of several TEP1 mutant A. gambiae lines. These mutations inhibited protein production and rendered TEP1 mutants hypersusceptible to Plasmodium berghei. The TALEN technology opens up new avenues for genetic analysis in this disease vector and may offer novel biotechnology-based approaches for malaria control.
Collapse
|