1
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
2
|
Chu BKY, Lin YS, Shen HCH, Chen RPY. Cross-Seeding Assay in the Investigation of the Amyloid Core of Prion Fibrils. Methods Mol Biol 2023; 2551:633-647. [PMID: 36310229 DOI: 10.1007/978-1-0716-2597-2_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amyloidogenesis, self-propagation of protein or peptide monomers to amyloid fibrils, has been linked to incurable pathogenesis of neurodegenerative diseases such as Alzheimer's disease and prion diseases. Investigations of amyloid structures and how monomers are transformed through seeding are therefore crucial for developing therapeutics toward these diseases. Here we describe a cross-seeding method to explore the amyloid core in prion fibrils that uses preformed amyloid fibrils as a seed to induce the transformation of other protein or peptide monomers to amyloid fibrils.
Collapse
Affiliation(s)
- Brett K-Y Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Sheng Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Howard C-H Shen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates. Int J Mol Sci 2020; 21:ijms21197410. [PMID: 33049945 PMCID: PMC7583978 DOI: 10.3390/ijms21197410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Prion protein amyloid aggregates are associated with infectious neurodegenerative diseases, known as transmissible spongiform encephalopathies. Self-replication of amyloid structures by refolding of native protein molecules is the probable mechanism of disease transmission. Amyloid fibril formation and self-replication can be affected by many different factors, including other amyloid proteins and peptides. Mouse prion protein fragments 107-143 (PrP(107-143)) and 89-230 (PrP(89-230)) can form amyloid fibrils. β-sheet core in PrP(89-230) amyloid fibrils is limited to residues ∼160-220 with unstructured N-terminus. We employed chemical kinetics tools, atomic force microscopy and Fourier-transform infrared spectroscopy, to investigate the effects of mouse prion protein fragment 107-143 fibrils on the aggregation of PrP(89-230). The data suggest that amyloid aggregates of a short prion-derived peptide are not able to seed PrP(89-230) aggregation; however, they accelerate the self-replication of PrP(89-230) amyloid fibrils. We conclude that PrP(107-143) fibrils could facilitate the self-replication of PrP(89-230) amyloid fibrils in several possible ways, and that this process deserves more attention as it may play an important role in amyloid propagation.
Collapse
|
4
|
Shen HCH, Chen YH, Lin YS, Chu BKY, Liang CS, Yang CC, Chen RPY. Segments in the Amyloid Core that Distinguish Hamster from Mouse Prion Fibrils. Neurochem Res 2019; 44:1399-1409. [PMID: 30603982 DOI: 10.1007/s11064-018-02709-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/29/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and other mammals. The disease transmission can occur between different species but is limited by the sequence homology between host and inoculum. The crucial molecular event in the progression of this disease is prion formation, starting from the conformational conversion of the normal, membrane-anchored prion protein (PrPC) into the misfolded, β-sheet-rich and aggregation-prone isoform (PrPSc), which then self-associates into the infectious amyloid form called prion. Amyloid is the aggregate formed from one-dimensional protein association. As amyloid formation is a key hallmark in prion pathogenesis, studying which segments in prion protein are involved in the amyloid formation can provide molecular details in the cross-species transmission barrier of prion diseases. However, due to the difficulties of studying protein aggregates, very limited knowledge about prion structure or prion formation was disclosed by now. In this study, cross-seeding assay was used to identify the segments involved in the amyloid fibril formation of full-length hamster prion protein, SHaPrP(23-231). Our results showed that the residues in the segments 108-127, 172-194 (helix 2 in PrPC) and 200-227 (helix 3 in PrPC) are in the amyloid core of hamster prion fibrils. The segment 127-143, but not 107-126 (which corresponds to hamster sequence 108-127), was previously reported to be involved in the amyloid core of full-length mouse prion fibrils. Our results indicate that hamster prion protein and mouse prion protein use different segments to form the amyloid core in amyloidogenesis. The sequence-dependent core formation can be used to explain the seeding barrier between mouse and hamster.
Collapse
Affiliation(s)
- Howard C-H Shen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yung-Han Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan
| | - Yu-Sheng Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Brett K-Y Chu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Shin Liang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Chih Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan. .,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Wang Y, Shao Q, Hall CK. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways. J Biol Chem 2016; 291:22093-22105. [PMID: 27576687 DOI: 10.1074/jbc.m116.744573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 12/14/2022] Open
Abstract
The prion diseases are a family of fatal neurodegenerative diseases associated with the misfolding and accumulation of normal prion protein (PrPC) into its pathogenic scrapie form (PrPSc). Understanding the fundamentals of prion protein aggregation and the molecular architecture of PrPSc is key to unraveling the pathology of prion diseases. Our work investigates the early-stage aggregation of three prion protein peptides, corresponding to residues 120-144 of human (Hu), bank vole (BV), and Syrian hamster (SHa) prion protein, from disordered monomers to β-sheet-rich fibrillar structures. Using 12 μs discontinuous molecular dynamics simulations combined with the PRIME20 force field, we find that the Hu-, BV-, and SHaPrP(120-144) aggregate via multiple nucleation-dependent pathways to form U-shaped, S-shaped, and Ω-shaped protofilaments. The S-shaped HuPrP(120-144) protofilament is similar to the amyloid core structure of HuPrP(112-141) predicted by Zweckstetter. HuPrP(120-144) has a shorter aggregation lag phase than BVPrP(120-144) followed by SHaPrP(120-144), consistent with experimental findings. Two amino acid substitutions I138M and I139M retard the formation of parallel in-register β-sheet dimers during the nucleation stage by increasing side chain-side chain association and reducing side chain interaction specificity. On average, HuPrP(120-144) aggregates contain more parallel β-sheet content than those formed by BV- and SHaPrP(120-144). Deletion of the C-terminal residues 138-144 prevents formation of fibrillar structures in agreement with the experiment. This work sheds light on the amyloid core structures underlying prion strains and how I138M, I139M, and S143N affect prion protein aggregation kinetics.
Collapse
Affiliation(s)
- Yiming Wang
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Qing Shao
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Carol K Hall
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| |
Collapse
|
6
|
Anchorless 23-230 PrPC interactomics for elucidation of PrPC protective role. Mol Neurobiol 2014; 49:1385-99. [PMID: 24390569 DOI: 10.1007/s12035-013-8616-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann-Sträussler-Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23-230 PrPC (Δ23-230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23-230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23-230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23-230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23-230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23-230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1-253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23-230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.
Collapse
|
7
|
Taguchi Y, Schätzl HM. Identifying critical sites of PrP(c)-PrP(Sc) interaction in prion-infected cells by dominant-negative inhibition. Prion 2013; 7:452-6. [PMID: 24401595 PMCID: PMC4201612 DOI: 10.4161/pri.27500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A direct physical interaction of the prion protein isoforms is a key element in prion conversion. Which sites interact first and which parts of PrPc are converted subsequently is presently not known in detail. We hypothesized that structural changes induced by PrPSc interaction occur in more than one interface and subsequently propagate within the PrPC substrate, like epicenters of structural changes. To identify potential interfaces we created a series of systematically-designed mutant PrPs and tested them in prion-infected cells for dominant-negative inhibition (DNI) effects. This showed that mutant PrPs with deletions in the region between first and second α-helix are involved in PrP-PrP interaction and conversion of PrPC into PrPSc. Although some PrPs did not reach the plasma membrane, they had access to the locales of prion conversion and PrPSc recycling using autophagy pathways. Using other series of mutant PrPs we already have identified additional sites which constitute potential interaction interfaces. Our approach has the potential to characterize PrP-PrP interaction sites in the context of prion-infected cells. Besides providing further insights into the molecular mechanisms of prion conversion, this data may help to further elucidate how prion strain diversity is maintained.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Department of Comparative Biology & Experimental Medicine; Faculty of Veterinary Medicine; University of Calgary; Calgary, AB Canada
| | - Hermann M Schätzl
- Department of Comparative Biology & Experimental Medicine; Faculty of Veterinary Medicine; University of Calgary; Calgary, AB Canada; Departments of Molecular Biology and of Veterinary Sciences; University of Wyoming; Laramie, Wyoming, USA
| |
Collapse
|