1
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
2
|
Krygier A, Szmajda-Krygier D, Sałagacka-Kubiak A, Jamroziak K, Żebrowska-Nawrocka M, Balcerczak E. Association between the CEBPA and c-MYC genes expression levels and acute myeloid leukemia pathogenesis and development. Med Oncol 2020; 37:109. [PMID: 33170359 PMCID: PMC7655568 DOI: 10.1007/s12032-020-01436-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
CEBPA and c-MYC genes belong to TF and play an essential role in hematologic malignancies development. Furthermore, these genes also co-regulate with RUNX1 and lead to bone marrow differentiation and may contribute to the leukemic transformation. Understanding the function and full characteristics of selected genes in the group of patients with AML can be helpful in assessing prognosis, and their usefulness as prognostic factors can be revealed. The aim of the study was to evaluate CEBPA and c-MYC mRNA expression level and to seek their association with demographical and clinical features of AML patients such as: age, gender, FAB classification, mortality or leukemia cell karyotype. Obtained results were also correlated with the expression level of the RUNX gene family. To assess of relative gene expression level the qPCR method was used. The expression levels of CEBPA and c-MYC gene varied among patients. Neither CEBPA nor c-MYC expression levels differed significantly between women and men (p=0.8325 and p=0.1698, respectively). No statistically significant correlation between age at the time of diagnosis and expression of CEBPA (p=0.4314) or c-MYC (p=0.9524) was stated. There were no significant associations between relative CEBPA (p=0.4247) or c-MYC (p=0.4655) expression level and FAB subtype and mortality among the enrolled patients (p=0.5858 and p=0.8437, respectively). However, it was observed that c-MYC and RUNX1 expression levels were significantly positively correlated (rS=0.328, p=0.0411). Overall, AML pathogenesis involves a complex interaction among CEBPA, c-MYC and RUNX family genes.
Collapse
Affiliation(s)
- Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Aleksandra Sałagacka-Kubiak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Chocimska 5 Street, 00-791 Warsaw, Poland
| | - Marta Żebrowska-Nawrocka
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| |
Collapse
|
3
|
Hosokawa H, Ungerbäck J, Wang X, Matsumoto M, Nakayama KI, Cohen SM, Tanaka T, Rothenberg EV. Transcription Factor PU.1 Represses and Activates Gene Expression in Early T Cells by Redirecting Partner Transcription Factor Binding. Immunity 2019; 48:1119-1134.e7. [PMID: 29924977 DOI: 10.1016/j.immuni.2018.04.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 01/09/2023]
Abstract
Transcription factors normally regulate gene expression through their action at sites where they bind to DNA. However, the balance of activating and repressive functions that a transcription factor can mediate is not completely understood. Here, we showed that the transcription factor PU.1 regulated gene expression in early T cell development both by recruiting partner transcription factors to its own binding sites and by depleting them from the binding sites that they preferred when PU.1 was absent. The removal of partner factors Satb1 and Runx1 occurred primarily from sites where PU.1 itself did not bind. Genes linked to sites of partner factor "theft" were enriched for genes that PU.1 represses despite lack of binding, both in a model cell line system and in normal T cell development. Thus, system-level competitive recruitment dynamics permit PU.1 to affect gene expression both through its own target sites and through action at a distance.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Molecular Hematology, Lund University, Sweden
| | - Xun Wang
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Sarah M Cohen
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Perna S, Pinoli P, Ceri S, Wong L. TICA: Transcriptional Interaction and Coregulation Analyzer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:342-353. [PMID: 30578913 PMCID: PMC6364043 DOI: 10.1016/j.gpb.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation is critical to cellular processes of all organisms. Regulatory mechanisms often involve more than one transcription factor (TF) from different families, binding together and attaching to the DNA as a single complex. However, only a fraction of the regulatory partners of each TF is currently known. In this paper, we present the Transcriptional Interaction and Coregulation Analyzer (TICA), a novel methodology for predicting heterotypic physical interaction of TFs. TICA employs a data-driven approach to infer interaction phenomena from chromatin immunoprecipitation and sequencing (ChIP-seq) data. Its prediction rules are based on the distribution of minimal distance couples of paired binding sites belonging to different TFs which are located closest to each other in promoter regions. Notably, TICA uses only binding site information from input ChIP-seq experiments, bypassing the need to do motif calling on sequencing data. We present our method and test it on ENCODE ChIP-seq datasets, using three cell lines as reference including HepG2, GM12878, and K562. TICA positive predictions on ENCODE ChIP-seq data are strongly enriched when compared to protein complex (CORUM) and functional interaction (BioGRID) databases. We also compare TICA against both motif/ChIP-seq based methods for physical TF-TF interaction prediction and published literature. Based on our results, TICA offers significant specificity (average 0.902) while maintaining a good recall (average 0.284) with respect to CORUM, providing a novel technique for fast analysis of regulatory effect in cell lines. Furthermore, predictions by TICA are complementary to other methods for TF-TF interaction prediction (in particular, TACO and CENTDIST). Thus, combined application of these prediction tools results in much improved sensitivity in detecting TF-TF interactions compared to TICA alone (sensitivity of 0.526 when combining TICA with TACO and 0.585 when combining with CENTDIST) with little compromise in specificity (specificity 0.760 when combining with TACO and 0.643 with CENTDIST). TICA is publicly available at http://geco.deib.polimi.it/tica/.
Collapse
Affiliation(s)
- Stefano Perna
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Stefano Ceri
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| |
Collapse
|
5
|
RUNX1 promotes cell growth in human T-cell acute lymphoblastic leukemia by transcriptional regulation of key target genes. Exp Hematol 2018; 64:84-96. [DOI: 10.1016/j.exphem.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
|
6
|
Chai J, Guo D, Ma W, Han D, Dong W, Guo H, Zhang Y. A feedback loop consisting of RUNX2/LncRNA-PVT1/miR-455 is involved in the progression of colorectal cancer. Am J Cancer Res 2018; 8:538-550. [PMID: 29637007 PMCID: PMC5883102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to participate in cancer progression. In the present study, we explored the potential roles of lncRNA-PVT1 in the development process of colorectal cancer (CRC) via miR-455. We found that PVT1 is up-regulated in human CRC tissues compared to adjacent normal tissues. A functional study showed that the silencing of PVT1 expression by siRNAs inhibited cell proliferation, migration and invasion, whereas the overexpression of PVT1 accelerated cell proliferation, migration and invasion in vitro. A mechanistic study indicated PVT1 regulated the growth of CRC tumors by acting as a competing endogenous RNAs (ceRNA) and negatively regulated miR-455. Furthermore, we discovered that RUNX2, a functional transcription factor in CRC, up-regulated PVT1 expression. Therefore, our study suggested that the RUNX2/PVT1/miR-455 regulatory axis plays an important role in CRC tumorigenesis and may be a therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Jie Chai
- Department of General Surgery, Shandong University Affiliated Shandong Cancer Hospital and InstituteShandong Province, China
| | - Dawei Guo
- Shandong Academy of Medical SciencesShandong Province, China
| | - Wanli Ma
- Department of Orthopedics, The Second Hospital of Shandong UniversityShandong Province, China
| | - Dali Han
- Department of Radiation Oncology, Shandong University Affiliated Shandong Cancer Hospital and InstituteShandong Province, China
| | - Wei Dong
- Department of Radiation Oncology, Shandong University Affiliated Shandong Cancer Hospital and InstituteShandong Province, China
| | - Hongliang Guo
- Department of General Surgery, Shandong University Affiliated Shandong Cancer Hospital and InstituteShandong Province, China
| | - Yi Zhang
- Department of General Surgery, Shandong University Affiliated Shandong Cancer Hospital and InstituteShandong Province, China
| |
Collapse
|
7
|
Thapa P, Manso B, Chung JY, Romera Arocha S, Xue HH, Angelo DBS, Shapiro VS. The differentiation of ROR-γt expressing iNKT17 cells is orchestrated by Runx1. Sci Rep 2017; 7:7018. [PMID: 28765611 PMCID: PMC5539328 DOI: 10.1038/s41598-017-07365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
iNKT cells are a unique lineage of T cells that recognize glycolipid presented by CD1d. In the thymus, they differentiate into iNKT1, iNKT2 and iNKT17 effector subsets, characterized by preferential expression of Tbet, Gata3 and ROR-γt and production of IFN-γ, IL-4 and IL-17, respectively. We demonstrate that the transcriptional regulator Runx1 is essential for the generation of ROR-γt expressing iNKT17 cells. PLZF-cre Runx1 cKO mice lack iNKT17 cells in the thymus, spleen and liver. Runx1-deficient iNKT cells have altered expression of several genes important for iNKT17 differentiation, including decreased expression of IL-7Rα, BATF and c-Maf and increased expression of Bcl11b and Lef1. However, reduction of Lef1 expression or introduction of an IL-7Rα transgene is not sufficient to correct the defect in iNKT17 differentiation, demonstrating that Runx1 is a key regulator of several genes required for iNKT17 differentiation. Loss of Runx1 leads to a severe decrease in iNKT cell numbers in the thymus, spleen and liver. The decrease in cell number is due to a combined decrease in proliferation at Stage 1 during thymic development and increased apoptosis. Thus, we describe a novel role of Runx1 in iNKT cell development and differentiation, particularly in orchestrating iNKT17 differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bryce Manso
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Ji Young Chung
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sinibaldo Romera Arocha
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242, USA
| | - Derek B Sant' Angelo
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Virginia Smith Shapiro
- Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Tezgel AÖ, Jacobs P, Backlund CM, Telfer JC, Tew GN. Synthetic Protein Mimics for Functional Protein Delivery. Biomacromolecules 2017; 18:819-825. [DOI: 10.1021/acs.biomac.6b01685] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Özgül Tezgel
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Paejonette Jacobs
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Coralie M. Backlund
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Janice C. Telfer
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department
of Polymer Science and Engineering, ‡Molecular and Cell Biology Program, and §Veterinary and
Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun 2015; 6:6758. [PMID: 25849564 PMCID: PMC4396391 DOI: 10.1038/ncomms7758] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
The impact of protein arginine methylation on the regulation of immune functions is virtually unknown. Here, we apply a novel method—isomethionine methyl-SILAC—coupled with antibody-mediated arginine-methylated peptide enrichment to identify methylated peptides in human T cells by mass spectrometry. This approach allowed the identification of 2,502 arginine methylation sites from 1,257 tissue-specific and housekeeping proteins. We find that components of T cell antigen receptor signal machinery and several key transcription factors that regulate T cell fate determination are methylated on arginine. Moreover, we demonstrate changes in arginine methylation stoichiometry during cellular stimulation in a subset of proteins critical to T cell differentiation. Our data suggest that protein arginine methyltransferases exert key regulatory roles in T cell activation and differentiation, opening a new field of investigation in T cell biology. Arginine methylation is an important regulatory post-translational modification. Here, the authors present a new SILAC-based method—iMethyl-SILAC—that allows unambiguous identification of arginine-methylated peptide pairs by mass spectrometry and apply it to greatly expand the known T-cell arginine methylome.
Collapse
Affiliation(s)
- Vincent Geoghegan
- Laboratory of T cell signalling, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ailan Guo
- Cell Signaling Technology Inc., Trask Lane, Danvers, Massachusetts 01923, USA
| | - David Trudgian
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Laboratory of T cell signalling, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|