1
|
Hodonsky CJ, Baldassari AR, Bien SA, Raffield LM, Highland HM, Sitlani CM, Wojcik GL, Tao R, Graff M, Tang W, Thyagarajan B, Buyske S, Fornage M, Hindorff LA, Li Y, Lin D, Reiner AP, North KE, Loos RJF, Kooperberg C, Avery CL. Ancestry-specific associations identified in genome-wide combined-phenotype study of red blood cell traits emphasize benefits of diversity in genomics. BMC Genomics 2020; 21:228. [PMID: 32171239 PMCID: PMC7071748 DOI: 10.1186/s12864-020-6626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Quantitative red blood cell (RBC) traits are highly polygenic clinically relevant traits, with approximately 500 reported GWAS loci. The majority of RBC trait GWAS have been performed in European- or East Asian-ancestry populations, despite evidence that rare or ancestry-specific variation contributes substantially to RBC trait heritability. Recently developed combined-phenotype methods which leverage genetic trait correlation to improve statistical power have not yet been applied to these traits. Here we leveraged correlation of seven quantitative RBC traits in performing a combined-phenotype analysis in a multi-ethnic study population. RESULTS We used the adaptive sum of powered scores (aSPU) test to assess combined-phenotype associations between ~ 21 million SNPs and seven RBC traits in a multi-ethnic population (maximum n = 67,885 participants; 24% African American, 30% Hispanic/Latino, and 43% European American; 76% female). Thirty-nine loci in our multi-ethnic population contained at least one significant association signal (p < 5E-9), with lead SNPs at nine loci significantly associated with three or more RBC traits. A majority of the lead SNPs were common (MAF > 5%) across all ancestral populations. Nineteen additional independent association signals were identified at seven known loci (HFE, KIT, HBS1L/MYB, CITED2/FILNC1, ABO, HBA1/2, and PLIN4/5). For example, the HBA1/2 locus contained 14 conditionally independent association signals, 11 of which were previously unreported and are specific to African and Amerindian ancestries. One variant in this region was common in all ancestries, but exhibited a narrower LD block in African Americans than European Americans or Hispanics/Latinos. GTEx eQTL analysis of all independent lead SNPs yielded 31 significant associations in relevant tissues, over half of which were not at the gene immediately proximal to the lead SNP. CONCLUSION This work identified seven loci containing multiple independent association signals for RBC traits using a combined-phenotype approach, which may improve discovery in genetically correlated traits. Highly complex genetic architecture at the HBA1/2 locus was only revealed by the inclusion of African Americans and Hispanics/Latinos, underscoring the continued importance of expanding large GWAS to include ancestrally diverse populations.
Collapse
Affiliation(s)
- Chani J. Hodonsky
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
- University of Virginia Center for Public Health Genomics, 1355 Lee St, Charlottesville, VA 22908 USA
| | - Antoine R. Baldassari
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Stephanie A. Bien
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Heather M. Highland
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Colleen M. Sitlani
- University of Washington, 1730 Minor Ave, Ste 1360, Seattle, WA 98101 USA
| | - Genevieve L. Wojcik
- Stanford University School of Medicine, 291 Campus Dr, Stanford, CA 94305 USA
| | - Ran Tao
- Vanderbilt University, 2525 West End Ave #1100, Nashville, TN 37203 USA
| | - Marielisa Graff
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Weihong Tang
- University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | | | - Steve Buyske
- Rutgers University, 683 Hoes Ln W, Piscataway, NJ 08854 USA
| | - Myriam Fornage
- University of Texas Houston, 7000 Fannin Street, Houston, TX 77030 USA
| | - Lucia A. Hindorff
- National Human Genome Research Institute, 31 Center Dr, Bethesda, MD 20894 USA
| | - Yun Li
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Danyu Lin
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| | - Alex P. Reiner
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 USA
- University of Washington, 1705 NE Pacific St, Seattle, WA 98195 USA
| | - Kari E. North
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Ruth J. F. Loos
- Icahn School of Medicine at Mount Sinai, 1468 Madison Ave, New York, NY 10029 USA
| | | | - Christy L. Avery
- University of North Carolina Gillings School of Public Health, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| |
Collapse
|
2
|
Associations between single nucleotide polymorphisms and erythrocyte parameters in humans: A systematic literature review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:58-67. [DOI: 10.1016/j.mrrev.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/15/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
|
3
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
4
|
Lin BD, Carnero Montoro E, Bell JT, Boomsma DI, de Geus EJ, Jansen R, Kluft C, Mangino M, Penninx B, Spector TD, Willemsen G, Hottenga JJ. 2SNP heritability and effects of genetic variants for neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio. J Hum Genet 2017; 62:979-988. [PMID: 29066854 PMCID: PMC5669488 DOI: 10.1038/jhg.2017.76] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are important biomarkers for disease development and progression. To gain insight into the genetic causes of variance in NLR and PLR in the general population, we conducted genome-wide association (GWA) analyses and estimated SNP heritability in a sample of 5901 related healthy Dutch individuals. GWA analyses identified a new genome-wide significant locus on the HBS1L-MYB intergenic region for PLR, which replicated in a sample of 2538 British twins. For platelet count, we replicated three known genome-wide significant loci in our cohort (at CCDC71L-PIK3CG, BAK1 and ARHGEF3). For neutrophil count, we replicated the PSMD3 locus. For the identified top SNPs, we found significant cis and trans expression quantitative trait loci effects for several loci involved in hematological and immunological pathways. Linkage Disequilibrium score (LD) regression analyses for PLR and NLR confirmed that both traits are heritable, with a polygenetic SNP heritability for PLR of 14.1%, and for NLR of 2.4%. Genetic correlations were present between ratios and the constituent counts, with the genetic correlation (r=0.45) of PLR with platelet count reaching statistical significance. In conclusion, we established that two important biomarkers have a significant heritable SNP component, and identified the first genome-wide locus for PLR.
Collapse
Affiliation(s)
- Bochao Danae Lin
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elena Carnero Montoro
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eco J. de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- EMGO+ Institute for Health & Care Research, VU Medical Center, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, VU Medical Center, Amsterdam, The Netherlands
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - Brenda Penninx
- Department of Psychiatry, VU Medical Center, Amsterdam, The Netherlands
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- EMGO+ Institute for Health & Care Research, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte.
Collapse
|
6
|
van Rooij FJ, Qayyum R, Smith AV, Zhou Y, Trompet S, Tanaka T, Keller MF, Chang LC, Schmidt H, Yang ML, Chen MH, Hayes J, Johnson AD, Yanek LR, Mueller C, Lange L, Floyd JS, Ghanbari M, Zonderman AB, Jukema JW, Hofman A, van Duijn CM, Desch KC, Saba Y, Ozel AB, Snively BM, Wu JY, Schmidt R, Fornage M, Klein RJ, Fox CS, Matsuda K, Kamatani N, Wild PS, Stott DJ, Ford I, Slagboom PE, Yang J, Chu AY, Lambert AJ, Uitterlinden AG, Franco OH, Hofer E, Ginsburg D, Hu B, Keating B, Schick UM, Brody JA, Li JZ, Chen Z, Zeller T, Guralnik JM, Chasman DI, Peters LL, Kubo M, Becker DM, Li J, Eiriksdottir G, Rotter JI, Levy D, Grossmann V, Patel KV, Chen CH, Ridker PM, Tang H, Launer LJ, Rice KM, Li-Gao R, Ferrucci L, Evans MK, Choudhuri A, Trompouki E, Abraham BJ, Yang S, Takahashi A, Kamatani Y, Kooperberg C, Harris TB, Jee SH, Coresh J, Tsai FJ, Longo DL, Chen YT, Felix JF, Yang Q, Psaty BM, Boerwinkle E, Becker LC, Mook-Kanamori DO, Wilson JG, Gudnason V, O'Donnell CJ, Dehghan A, Cupples LA, Nalls MA, Morris AP, Okada Y, Reiner AP, Zon LI, Ganesh SK, et alvan Rooij FJ, Qayyum R, Smith AV, Zhou Y, Trompet S, Tanaka T, Keller MF, Chang LC, Schmidt H, Yang ML, Chen MH, Hayes J, Johnson AD, Yanek LR, Mueller C, Lange L, Floyd JS, Ghanbari M, Zonderman AB, Jukema JW, Hofman A, van Duijn CM, Desch KC, Saba Y, Ozel AB, Snively BM, Wu JY, Schmidt R, Fornage M, Klein RJ, Fox CS, Matsuda K, Kamatani N, Wild PS, Stott DJ, Ford I, Slagboom PE, Yang J, Chu AY, Lambert AJ, Uitterlinden AG, Franco OH, Hofer E, Ginsburg D, Hu B, Keating B, Schick UM, Brody JA, Li JZ, Chen Z, Zeller T, Guralnik JM, Chasman DI, Peters LL, Kubo M, Becker DM, Li J, Eiriksdottir G, Rotter JI, Levy D, Grossmann V, Patel KV, Chen CH, Ridker PM, Tang H, Launer LJ, Rice KM, Li-Gao R, Ferrucci L, Evans MK, Choudhuri A, Trompouki E, Abraham BJ, Yang S, Takahashi A, Kamatani Y, Kooperberg C, Harris TB, Jee SH, Coresh J, Tsai FJ, Longo DL, Chen YT, Felix JF, Yang Q, Psaty BM, Boerwinkle E, Becker LC, Mook-Kanamori DO, Wilson JG, Gudnason V, O'Donnell CJ, Dehghan A, Cupples LA, Nalls MA, Morris AP, Okada Y, Reiner AP, Zon LI, Ganesh SK, Ganesh SK. Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. Am J Hum Genet 2017; 100:51-63. [PMID: 28017375 DOI: 10.1016/j.ajhg.2016.11.016] [Show More Authors] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Department of Human Genetics, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Pankratz N, Schick UM, Zhou Y, Zhou W, Ahluwalia TS, Allende ML, Auer PL, Bork-Jensen J, Brody JA, Chen MH, Clavo V, Eicher JD, Grarup N, Hagedorn EJ, Hu B, Hunker K, Johnson AD, Leusink M, Lu Y, Lyytikäinen LP, Manichaikul A, Marioni RE, Nalls MA, Pazoki R, Smith AV, van Rooij FJA, Yang ML, Zhang X, Zhang Y, Asselbergs FW, Boerwinkle E, Borecki IB, Bottinger EP, Cushman M, de Bakker PIW, Deary IJ, Dong L, Feitosa MF, Floyd JS, Franceschini N, Franco OH, Garcia ME, Grove ML, Gudnason V, Hansen T, Harris TB, Hofman A, Jackson RD, Jia J, Kähönen M, Launer LJ, Lehtimäki T, Liewald DC, Linneberg A, Liu Y, Loos RJF, Nguyen VM, Numans ME, Pedersen O, Psaty BM, Raitakari OT, Rich SS, Rivadeneira F, Di Sant AMR, Rotter JI, Starr JM, Taylor KD, Thuesen BH, Tracy RP, Uitterlinden AG, Wang J, Wang J, Dehghan A, Huo Y, Cupples LA, Wilson JG, Proia RL, Zon LI, O’Donnell CJ, Reiner AP, Ganesh SK. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet 2016; 48:867-76. [PMID: 27399967 PMCID: PMC5145000 DOI: 10.1038/ng.3607] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Hematologic measures such as hematocrit and white blood cell (WBC) count are heritable and clinically relevant. We analyzed erythrocyte and WBC phenotypes in 52,531 individuals (37,775 of European ancestry, 11,589 African Americans, and 3,167 Hispanic Americans) from 16 population-based cohorts with Illumina HumanExome BeadChip genotypes. We then performed replication analyses of new discoveries in 18,018 European-American women and 5,261 Han Chinese. We identified and replicated four new erythrocyte trait-locus associations (CEP89, SHROOM3, FADS2, and APOE) and six new WBC loci for neutrophil count (S1PR4), monocyte count (BTBD8, NLRP12, and IL17RA), eosinophil count (IRF1), and total WBC count (MYB). The association of a rare missense variant in S1PR4 supports the role of sphingosine-1-phosphate signaling in leukocyte trafficking and circulating neutrophil counts. Loss-of-function experiments for S1pr4 in mouse and s1pr4 in zebrafish demonstrated phenotypes consistent with the association observed in humans and altered kinetics of neutrophil recruitment and resolution in response to tissue injury.
Collapse
Affiliation(s)
- Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Zhou
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tarunveer Singh Ahluwalia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul L Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Vinna Clavo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John D Eicher
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elliott J Hagedorn
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Bella Hu
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Kristina Hunker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Leusink
- Division Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Min-Lee Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoling Zhang
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ingrid B Borecki
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Cushman
- Department of Medicine, Division of Hematology/Oncology, University of Vermont, Burlington, VT, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Liguang Dong
- Jin Ding Street Community Healthy Center, Peking University Shougang Hospital, Beijing, China
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH, USA
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - David C Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy M Nguyen
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Mattijs E Numans
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Public Health and Primary Care, Leiden University Medical Centre, Leiden, Netherlands
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Amanda M Rosa Di Sant
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Geriatric Medicine unit, University of Edinburgh, Edinburgh, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester, VT, USA
- Department of Biochemistry, University of Vermont College of Medicine, Colchester, VT, USA
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jiansong Wang
- Chronic Diseases Research Center, Peking University Shougang Hospital, Beijing, China
| | - Judy Wang
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonard I Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Cardiology Section, Department of Medicine, Boston Veteran’s Administration Healthcare, Boston, MA, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA, Hill WD, Kacprowski T, Li J, Lyytikäinen LP, Manichaikul A, Mihailov E, O'Donoghue ML, Pankratz N, Pazoki R, Polfus LM, Smith AV, Schurmann C, Vacchi-Suzzi C, Waterworth DM, Evangelou E, Yanek LR, Burt A, Chen MH, van Rooij FJA, Floyd JS, Greinacher A, Harris TB, Highland HM, Lange LA, Liu Y, Mägi R, Nalls MA, Mathias RA, Nickerson DA, Nikus K, Starr JM, Tardif JC, Tzoulaki I, Velez Edwards DR, Wallentin L, Bartz TM, Becker LC, Denny JC, Raffield LM, Rioux JD, Friedrich N, Fornage M, Gao H, Hirschhorn JN, Liewald DCM, Rich SS, Uitterlinden A, Bastarache L, Becker DM, Boerwinkle E, de Denus S, Bottinger EP, Hayward C, Hofman A, Homuth G, Lange E, Launer LJ, Lehtimäki T, Lu Y, Metspalu A, O'Donnell CJ, Quarells RC, Richard M, Torstenson ES, Taylor KD, Vergnaud AC, Zonderman AB, Crosslin DR, Deary IJ, Dörr M, Elliott P, Evans MK, Gudnason V, Kähönen M, Psaty BM, Rotter JI, Slater AJ, Dehghan A, White HD, Ganesh SK, Loos RJF, Esko T, Faraday N, Wilson JG, Cushman M, Johnson AD, Edwards TL, Zakai NA, Lettre G, Reiner AP, Auer PL. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. Am J Hum Genet 2016; 99:22-39. [PMID: 27346689 DOI: 10.1016/j.ajhg.2016.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3' UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John D Eicher
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Nathalie Chami
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Ayush Giri
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany; DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Linda M Polfus
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caterina Vacchi-Suzzi
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dawn M Waterworth
- Genetics, Target Sciences, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Lisa R Yanek
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amber Burt
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Heather M Highland
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Rasika A Mathias
- Department of Medicine, Divisions of Allergy and Clinical Immunology and General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland; University of Tampere School of Medicine, Tampere 33014, Finland
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, Edinburgh EH8 9JZ, UK
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Digna R Velez Edwards
- Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, and Uppsala Clinical Research Center, Uppsala University, 751 85 Uppsala, Sweden
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Lewis C Becker
- Department of Medicine, Divisions of Cardiology and General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN 37203, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - John D Rioux
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Nele Friedrich
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 13347, Germany
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Joel N Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Andre Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam 3015, the Netherlands
| | - Lisa Bastarache
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN 37203, USA
| | - Diane M Becker
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Simon de Denus
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and Ernst-Mortiz-Arndt University Greifswald, Greifswald 17475, Germany
| | - Ethan Lange
- Departments of Genetics and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Chris J O'Donnell
- National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA; Cardiology Section and Center for Population Genomics, Boston Veteran's Administration (VA) Healthcare, Boston, MA 02118, USA
| | - Rakale C Quarells
- Morehouse School of Medicine, Social Epidemiology Research Center, Cardiovascular Research Institute, Atlanta, GA 30310, USA
| | - Melissa Richard
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Eric S Torstenson
- Division of Epidemiology, Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN 37235, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Department of Cardiology, University Medicine Greifswald, Greifswald 17475, Germany
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Health Services, and Medicine, University of Washington, Seattle, WA 98101, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Andrew J Slater
- OmicSoft Corporation, Cary, NC 27513, USA; Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3000, the Netherlands
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland 1142, New Zealand
| | - Santhi K Ganesh
- Departments of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, MI 48108, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary Cushman
- Division of Hematology Oncology, Department of Medicine, The University of Vermont, Colchester, VT 05446, USA
| | - Andrew D Johnson
- Population Sciences Branch, National Heart Lung and Blood Institute, The Framingham Heart Study, Framingham, MA 01702, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37203, USA
| | - Neil A Zakai
- Division of Hematology Oncology, Department of Medicine, The University of Vermont, Colchester, VT 05446, USA
| | - Guillaume Lettre
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
9
|
McLachlan S, Giambartolomei C, White J, Charoen P, Wong A, Finan C, Engmann J, Shah T, Hersch M, Podmore C, Cavadino A, Jefferis BJ, Dale CE, Hypponen E, Morris RW, Casas JP, Kumari M, Ben-Shlomo Y, Gaunt TR, Drenos F, Langenberg C, Kuh D, Kivimaki M, Rueedi R, Waeber G, Hingorani AD, Price JF, Walker AP, UCLEB Consortium. Replication and Characterization of Association between ABO SNPs and Red Blood Cell Traits by Meta-Analysis in Europeans. PLoS One 2016; 11:e0156914. [PMID: 27280446 PMCID: PMC4900668 DOI: 10.1371/journal.pone.0156914] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/20/2016] [Indexed: 01/07/2023] Open
Abstract
Red blood cell (RBC) traits are routinely measured in clinical practice as important markers of health. Deviations from the physiological ranges are usually a sign of disease, although variation between healthy individuals also occurs, at least partly due to genetic factors. Recent large scale genetic studies identified loci associated with one or more of these traits; further characterization of known loci and identification of new loci is necessary to better understand their role in health and disease and to identify potential molecular mechanisms. We performed meta-analysis of Metabochip association results for six RBC traits—hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV) and red blood cell count (RCC)—in 11 093 Europeans from seven studies of the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium. We identified 394 non-overlapping SNPs in five loci at genome-wide significance: 6p22.1-6p21.33 (with HFE among others), 6q23.2 (with HBS1L among others), 6q23.3 (contains no genes), 9q34.3 (only ABO gene) and 22q13.1 (with TMPRSS6 among others), replicating previous findings of association with RBC traits at these loci and extending them by imputation to 1000 Genomes. We further characterized associations between ABO SNPs and three traits: hemoglobin, hematocrit and red blood cell count, replicating them in an independent cohort. Conditional analyses indicated the independent association of each of these traits with ABO SNPs and a role for blood group O in mediating the association. The 15 most significant RBC-associated ABO SNPs were also associated with five cardiometabolic traits, with discordance in the direction of effect between groups of traits, suggesting that ABO may act through more than one mechanism to influence cardiometabolic risk.
Collapse
Affiliation(s)
- Stela McLachlan
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Claudia Giambartolomei
- Department of Psychiatry, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, The Leon and Norma Hess Center for Science and Medicine, New York, New York, United States of America
| | - Jon White
- University College London Genetics Institute, Department of Genetics, Environment and Evolution, London, United Kingdom
| | - Pimphen Charoen
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jorgen Engmann
- Genetic Epidemiology Group, Institute of Cardiovascular Science, University College London, London, United Kingdom
- Farr Institute of Health Informatics Research, Department of Epidemiology & Public Health, University College London, London, United Kingdom
| | - Tina Shah
- Genetic Epidemiology Group, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clara Podmore
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alana Cavadino
- Centre for Environmental and Preventive Medicine, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
- Population, Policy and Practice, UCL Institute of Child Health, University College London, London, United Kingdom
| | - Barbara J. Jefferis
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London, United Kingdom
| | - Caroline E. Dale
- Farr Institute of Health Informatics Research, Department of Epidemiology & Public Health, University College London, London, United Kingdom
| | - Elina Hypponen
- Population, Policy and Practice, UCL Institute of Child Health, University College London, London, United Kingdom
- Centre for Population Health Research, School of Health Sciences and Sansom Institute of Health Research, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Richard W. Morris
- Department of Primary Care & Population Health, UCL Institute of Epidemiology & Health Care, University College London, London, United Kingdom
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Juan P. Casas
- Institute of Health Informatics, University College London, London, United Kingdom
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, United Kingdom
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London, United Kingdom
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Mika Kivimaki
- Department of Epidemiology & Public Health, UCL Institute of Epidemiology & Health Care, University College London, London, United Kingdom
| | - Rico Rueedi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gerard Waeber
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Farr Institute of Health Informatics Research, Department of Epidemiology & Public Health, University College London, London, United Kingdom
| | - Jacqueline F. Price
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Ann P. Walker
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | | |
Collapse
|