1
|
Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:97-121. [PMID: 36637718 DOI: 10.1007/5584_2022_753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions can be both essential components of cells as well as potential toxins if present in excess. Organisms utilize a variety of protein systems to maintain the concentration of metal ions within the appropriate range for cellular function, and to avoid concentrations where cellular damage can occur. In bacteria, numerous proteins contribute to copper homeostasis, including copper transporters, chelators, and redox enzymes. The genes that encode these proteins are often found in clusters, thus providing modular components that work together to achieve homeostasis. A better understanding of how these components function and cooperate to achieve metal ion resistance is needed, given the extensive use of metal ions, including copper, as broad-spectrum biocides in a variety of clinical and environmental settings. The copG gene is a common component of such copper resistance clusters, but its contribution to copper resistance is not well understood. In this review the available information about the CopG protein encoded by this gene is summarized. Comparison of the recent structure to diverse copper-containing metallochaperones, metalloenzymes, and electron transfer proteins suggests that CopG is a redox enzyme that uses multiple copper ions as active site redox cofactors to act on additional copper ion substrates. Mechanisms for both oxidase and reductase activity are proposed, and the biological advantages that these activities can contribute in conjunction with existing systems are described.
Collapse
|
2
|
Structural Insights into a Fusion Protein between a Glutaredoxin-like and a Ferredoxin-Disulfide Reductase Domain from an Extremophile Bacterium. INORGANICS 2022. [DOI: 10.3390/inorganics10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In eukaryotic photosynthetic organisms, ferredoxin–thioredoxin reductases (FTRs) are key proteins reducing several types of chloroplastic thioredoxins (TRXs) in light conditions. The electron cascade necessary to reduce oxidized TRXs involves a pair of catalytic cysteines and a [4Fe–4S] cluster present at the level of the FTR catalytic subunit, the iron–sulfur cluster receiving electrons from ferredoxins. Genomic analyses revealed the existence of FTR orthologs in non-photosynthetic organisms, including bacteria and archaea, referred to as ferredoxin-disulfide reductase (FDR) as they reduce various types of redoxins. In this study, we describe the tridimensional structure of a natural hybrid protein formed by an N-terminal glutaredoxin-like domain fused to a FDR domain present in the marine bacterium Desulfotalea psychrophila Lsv54. This structure provides information on how and why the absence of the variable subunit present in FTR heterodimer which normally protects the Fe–S cluster is dispensable in FDR proteins. In addition, modelling of a tripartite complex based on the existing structure of a rubredoxin (RBX)–FDR fusion present in anaerobic methanogen archaea allows recapitulating the electron flow involving these RBX, FDR and GRX protein domains.
Collapse
|
3
|
Vicker SL, Maina EN, Showalter AK, Tran N, Davidson EE, Bailey MR, McGarry SW, Freije WM, West JD. Broader than expected tolerance for substitutions in the WCGPCK catalytic motif of yeast thioredoxin 2. Free Radic Biol Med 2022; 178:308-313. [PMID: 34530076 DOI: 10.1016/j.freeradbiomed.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Thioredoxins constitute a key class of oxidant defense enzymes that facilitate disulfide bond reduction in oxidized substrate proteins. While thioredoxin's WCGPCK active site motif is highly conserved in traditional model organisms, predicted thioredoxins from newly sequenced genomes show variability in this motif, making ascertaining which genes encode functional thioredoxins with robust activity a challenge. To address this problem, we generated a semi-saturation mutagenesis library of approximately 70 thioredoxin variants harboring mutations adjacent to their catalytic cysteines, making substitutions in the Saccharomyces cerevisiae thioredoxin Trx2. Using this library, we determined how such substitutions impact oxidant defense in yeast along with how they influence disulfide reduction and interaction with binding partners in vivo. The majority of thioredoxin variants screened rescued the slow growth phenotype that accompanies deletion of the yeast cytosolic thioredoxins; however, the ability of these mutant proteins to protect against H2O2-mediated toxicity, facilitate disulfide reduction, and interact with redox partners varied widely, depending on the site being mutated and the substitution made. We report that thioredoxin is less tolerant of substitutions at its conserved tryptophan and proline in the active site motif, while it is more amenable to substitutions at the conserved glycine and lysine. Our work highlights a noteworthy plasticity within the active site of this critical oxidant defense enzyme.
Collapse
Affiliation(s)
- Shayna L Vicker
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Eran N Maina
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Abigail K Showalter
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Nghi Tran
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Emma E Davidson
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Morgan R Bailey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Stephen W McGarry
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Wilson M Freije
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA.
| |
Collapse
|
4
|
Arai S, Shibazaki C, Shimizu R, Adachi M, Ishibashi M, Tokunaga H, Tokunaga M. Catalytic mechanism and evolutionary characteristics of thioredoxin from Halobacterium salinarum NRC-1. Acta Crystallogr D Struct Biol 2020; 76:73-84. [PMID: 31909745 DOI: 10.1107/s2059798319015894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Thioredoxin (TRX) is an important antioxidant against oxidative stress. TRX from the extremely halophilic archaeon Halobacterium salinarum NRC-1 (HsTRX-A), which has the highest acidic residue content [(Asp + Glu)/(Arg + Lys + His) = 9.0] among known TRXs, was chosen to elucidate the catalytic mechanism and evolutionary characteristics associated with haloadaptation. X-ray crystallographic analysis revealed that the main-chain structure of HsTRX-A is similar to those of homologous TRXs; for example, the root-mean-square deviations on Cα atoms were <2.3 Å for extant archaeal TRXs and <1.5 Å for resurrected Precambrian TRXs. A unique water network was located near the active-site residues (Cys45 and Cys48) in HsTRX-A, which may enhance the proton transfer required for the reduction of substrates under a high-salt environment. The high density of negative charges on the molecular surface (3.6 × 10-3 e Å-2) should improve the solubility and haloadaptivity. Moreover, circular-dichroism measurements and enzymatic assays using a mutant HsTRX-A with deletion of the long flexible N-terminal region (Ala2-Pro17) revealed that Ala2-Pro17 improves the structural stability and the enzymatic activity of HsTRX-A under high-salt environments (>2 M NaCl). The elongation of the N-terminal region in HsTRX-A accompanies the increased hydrophilicity and acidic residue content but does not affect the structure of the active site. These observations offer insights into molecular evolution for haloadaptation and potential applications in halophilic protein-related biotechnology.
Collapse
Affiliation(s)
- Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Chie Shibazaki
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
5
|
Bihani SC, Panicker L, Rajpurohit YS, Misra HS, Kumar V. drFrnE Represents a Hitherto Unknown Class of Eubacterial Cytoplasmic Disulfide Oxido-Reductases. Antioxid Redox Signal 2018; 28:296-310. [PMID: 28899103 DOI: 10.1089/ars.2016.6960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Living cells employ thioredoxin and glutaredoxin disulfide oxido-reductases to protect thiol groups in intracellular proteins. FrnE protein of Deinococcus radiodurans (drFrnE) is a disulfide oxido-reductase that is induced in response to Cd2+ exposure and is involved in cadmium and radiation tolerance. The aim of this study is to probe structure, function, and cellular localization of FrnE class of proteins. RESULTS Here, we show drFrnE as a novel cytoplasmic oxido-reductase that could be functional in eubacteria under conditions where thioredoxin/glutaredoxin systems are inhibited or absent. Crystal structure analysis of drFrnE reveals thioredoxin fold with an alpha helical insertion domain and a unique, flexible, and functionally important C-terminal tail. The C-tail harbors a novel 239-CX4C-244 motif that interacts with the active site 22-CXXC-25 motif. Crystal structures with different active site redox states, including mixed disulfide (Cys22-Cys244), are reported here. The biochemical data show that 239-CX4C-244 motif channels electrons to the active site cysteines. drFrnE is more stable in the oxidized form, compared with the reduced form, supporting its role as a disulfide reductase. Using bioinformatics analysis and fluorescence microscopy, we show cytoplasmic localization of drFrnE. We have found "true" orthologs of drFrnE in several eubacterial phyla and, interestingly, all these groups apparently lack a functional glutaredoxin system. Innovation and Conclusion: We show that drFrnE represents a new class of hitherto unknown intracellular oxido-reductases that are abundantly present in eubacteria. Unlike other well-known oxido-reductases, FrnE harbors an additional dithiol motif that acts as a conduit to channel electrons to the active site during catalytic turnover. Antioxid. Redox Signal. 28, 296-310.
Collapse
Affiliation(s)
- Subhash C Bihani
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Lata Panicker
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | | | - Hari S Misra
- 2 Molecular Biology Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Life Sciences, Homi Bhabha National Institute , Mumbai, India
| | - Vinay Kumar
- 1 Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India .,3 Life Sciences, Homi Bhabha National Institute , Mumbai, India
| |
Collapse
|
6
|
Rosado LA, Wahni K, Degiacomi G, Pedre B, Young D, de la Rubia AG, Boldrin F, Martens E, Marcos-Pascual L, Sancho-Vaello E, Albesa-Jové D, Provvedi R, Martin C, Makarov V, Versées W, Verniest G, Guerin ME, Mateos LM, Manganelli R, Messens J. The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of Mycobacterium tuberculosis. J Biol Chem 2017; 292:13097-13110. [PMID: 28620052 DOI: 10.1074/jbc.m117.797837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/12/2017] [Indexed: 12/19/2022] Open
Abstract
The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H2O2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S-mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms.
Collapse
Affiliation(s)
- Leonardo Astolfi Rosado
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Khadija Wahni
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | | | - Brandán Pedre
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - David Young
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Alfonso G de la Rubia
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Edo Martens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Laura Marcos-Pascual
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | - Enea Sancho-Vaello
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain
| | - David Albesa-Jové
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | | | - Charlotte Martin
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Vadim Makarov
- the A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Wim Versées
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Guido Verniest
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Marcelo E Guerin
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | - Luis M Mateos
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Joris Messens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium, .,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| |
Collapse
|
7
|
Margalef-Català M, Araque I, Bordons A, Reguant C. Genetic and transcriptional study of glutathione metabolism in Oenococcus oeni. Int J Food Microbiol 2017; 242:61-69. [DOI: 10.1016/j.ijfoodmicro.2016.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
|
8
|
Bhatnagar A, Apostol MI, Bandyopadhyay D. Amino acid function relates to its embedded protein microenvironment: A study on disulfide-bridged cystine. Proteins 2016; 84:1576-1589. [DOI: 10.1002/prot.25101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Akshay Bhatnagar
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad 500078 India
| | - Marcin I. Apostol
- ADRx. Inc. 515 Marin St., Suite 314, Thousand Oaks; California 91360
| | - Debashree Bandyopadhyay
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad 500078 India
| |
Collapse
|
9
|
Chatelle C, Kraemer S, Ren G, Chmura H, Marechal N, Boyd D, Roggemans C, Ke N, Riggs P, Bardwell J, Berkmen M. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase. Antioxid Redox Signal 2015; 23:945-57. [PMID: 26191605 PMCID: PMC4624244 DOI: 10.1089/ars.2014.6235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. RESULTS We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. INNOVATION AND CONCLUSIONS Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization.
Collapse
Affiliation(s)
- Claire Chatelle
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Stéphanie Kraemer
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts.,2 Actelion, Allschwil, Switzerland
| | - Guoping Ren
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Hannah Chmura
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Nils Marechal
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Dana Boyd
- 3 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts
| | - Caroline Roggemans
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts.,4 Novartis, Basel, Switzerland
| | - Na Ke
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Paul Riggs
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - James Bardwell
- 5 Howard Hughes Medical Institute Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, Michigan
| | - Mehmet Berkmen
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| |
Collapse
|
10
|
Hydrogen-bonded complexes between dimethyl sulfoxide and monoprotic acids: molecular properties and IR spectroscopy. J Mol Model 2014; 20:2477. [PMID: 25342154 DOI: 10.1007/s00894-014-2477-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.
Collapse
|
11
|
Kirtania P, Bhattacharya B, Das Gupta SK. Mycobacteriophage L5Gp56, a novel member of the NrdH family of redoxins. FEMS Microbiol Lett 2014; 357:16-22. [PMID: 24913246 DOI: 10.1111/1574-6968.12502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Mycobacteriophage L5 gene 56 encodes a putative thioredoxin family protein. Phylogenetic analysis revealed that Gp56 and related proteins are distantly related to NrdH - a glutaredoxin homolog which has thioredoxin-like properties. To understand its function, the recombinant version of the protein was biochemically characterized. For the sake of comparison, a mycobacterial thioredoxin, TrxB, was included in the study. Results show that Gp56 can be reduced by dithiothreitol, but only at a higher concentration as compared with TrxB, indicating that the standard redox potential of Gp56 is lower than that of TrxB. The reduced protein can subsequently act as a reductant of protein disulfide bonds. Gp56 can be reduced by NADPH with the help of thioredoxin reductase (TrxR) but less efficiently as compared with TrxB. The abilities of Gp56 and TrxB to reduce Gp50, the L5-encoded ribonucleotide reductase, was examined. While both are capable of executing this function, the former needs more reducing equivalents in the process as compared with the latter. This study shows that L5Gp56 represents a new class of NrdH-like proteins that function optimally in a reducing environment.
Collapse
|