1
|
Qin J, Hong Y, Maczuga NT, Morona R, Totsika M. Tolerance mechanisms in polysaccharide biosynthesis: Implications for undecaprenol phosphate recycling in Escherichia coli and Shigella flexneri. PLoS Genet 2025; 21:e1011591. [PMID: 39883743 PMCID: PMC11813082 DOI: 10.1371/journal.pgen.1011591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
Bacterial polysaccharide synthesis is catalysed on the universal lipid carrier, undecaprenol phosphate (UndP). The cellular UndP pool is shared by different polysaccharide synthesis pathways including peptidoglycan biogenesis. Disruptions in cytosolic polysaccharide synthesis steps are detrimental to bacterial survival due to effects on UndP recycling. In contrast, bacteria can survive disruptions in the periplasmic steps, suggesting a tolerance mechanism to mitigate UndP sequestration. Here we investigated tolerance mechanisms to disruptions of polymerases that are involved in UndP-releasing steps in two related polysaccharide synthesis pathways: that for enterobacterial common antigen (ECA) and that for O antigen (OAg), in Escherichia coli and Shigella flexneri. Our study reveals that polysaccharide polymerisation is crucial for efficient UndP recycling. In E. coli K-12, cell survival upon disruptions in OAg polymerase is dependent on a functional ECA synthesis pathway and vice versa. This is because disruptions in OAg synthesis lead to the redirection of the shared lipid-linked sugar substrate UndPP-GlcNAc towards increased ECA production. Conversely, in S. flexneri, the OAg polymerase is essential due to its limited ECA production, which inadequately redirects UndP flow to support cell survival. We propose a model whereby sharing the initial sugar intermediate UndPP-GlcNAc between the ECA and OAg synthesis pathways allows UndP to be redirected towards ECA production, mitigating sequestration issues caused by disruptions in the OAg pathway. These findings suggest an evolutionary buffering mechanism that enhances bacterial survival when UndP sequestration occurs due to stalled polysaccharide biosynthesis, which may allow polysaccharide diversity in the species to increase over time.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Nicholas T. Maczuga
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
2
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
3
|
Qin J, Hong Y, Totsika M. Determining glycosyltransferase functional order via lethality due to accumulated O-antigen intermediates, exemplified with Shigella flexneri O-antigen biosynthesis. Appl Environ Microbiol 2024; 90:e0220323. [PMID: 38747588 PMCID: PMC11218652 DOI: 10.1128/aem.02203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 06/19/2024] Open
Abstract
The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis. Here, we describe a genetic approach to interrogate the functional order of glycosyltransferases (GTs). Using Shigella flexneri as a model, we established an initial glycosyltransferase (IT)-controlled system, which allows functional order allocation of the subsequent GT in a 2-fold manner as follows: (i) first, by reporting the growth defects caused by the sequestration of UndP through disruption of late GTs and (ii) second, by comparing the molecular sizes of stalled OAg intermediates when each putative GT is disrupted. Using this approach, we demonstrate that for RfbF and RfbG, the GT involved in the assembly of S. flexneri backbone OAg RU, RfbG, is responsible for both the committed step of OAg synthesis and the third transferase for the second L-Rha. We also show that RfbF functions as the last GT to complete the S. flexneri OAg RU backbone. We propose that this simple and effective genetic approach can be also extended to define the functional order of enzymatic synthesis of other diverse polysaccharides produced both by Gram-negative and Gram-positive bacteria.IMPORTANCEThe genetic basis of enzymatic assembly of structurally diverse O antigen (OAg) repeating units (RUs) in Gram-negative pathogens is poorly understood, representing a major limitation in our understanding of gene functions for the synthesis of bacterial polysaccharides. We present a simple genetic approach to confidently assign glycosyltransferase (GT) functions and the order in which they act during assembly of the OAg RU. We employed this approach to determine the functional order of GTs involved in Shigella flexneri OAg assembly. This approach can be generally applied in interrogating GT functions encoded by other bacterial polysaccharides to advance our understanding of diverse gene functions in the biosynthesis of polysaccharides, key knowledge in advancing biosynthetic polysaccharide production.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane City, Queensland, Australia
| |
Collapse
|
4
|
Qin J, Hong Y, Morona R, Totsika M. O antigen biogenesis sensitises Escherichia coli K-12 to bile salts, providing a plausible explanation for its evolutionary loss. PLoS Genet 2023; 19:e1010996. [PMID: 37792901 PMCID: PMC10578602 DOI: 10.1371/journal.pgen.1010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Escherichia coli K-12 is a model organism for bacteriology and has served as a workhorse for molecular biology and biochemistry for over a century since its first isolation in 1922. However, Escherichia coli K-12 strains are phenotypically devoid of an O antigen (OAg) since early reports in the scientific literature. Recent studies have reported the presence of independent mutations that abolish OAg repeating-unit (RU) biogenesis in E. coli K-12 strains from the same original source, suggesting unknown evolutionary forces have selected for inactivation of OAg biogenesis during the early propagation of K-12. Here, we show for the first time that restoration of OAg in E. coli K-12 strain MG1655 synergistically sensitises bacteria to vancomycin with bile salts (VBS). Suppressor mutants surviving lethal doses of VBS primarily contained disruptions in OAg biogenesis. We present data supporting a model where the transient presence and accumulation of lipid-linked OAg intermediates in the periplasmic leaflet of the inner membrane interfere with peptidoglycan sacculus biosynthesis, causing growth defects that are synergistically enhanced by bile salts. Lastly, we demonstrate that continuous bile salt exposure of OAg-producing MG1655 in the laboratory, can recreate a scenario where OAg disruption is selected for as an evolutionary fitness benefit. Our work thus provides a plausible explanation for the long-held mystery of the selective pressure that may have led to the loss of OAg biogenesis in E. coli K-12; this opens new avenues for exploring long-standing questions on the intricate network coordinating the synthesis of different cell envelope components in Gram-negative bacteria.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Song L, Soomro MA, Wang L, Song Y, Hu G. Identification and functional analysis of histone 1.2-like in red sea bream (Pagrus major). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104529. [PMID: 36087785 DOI: 10.1016/j.dci.2022.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Histone H1 acts as an essential chromatin component and participates in the formation of higher chromatin structures together with core histones. In addition, H1 also has important functions in physiological processes such as gene expression regulation, DNA repair, and the immune response. In this study, the histone homologous protein Pm-H1.2-like was identified from the transcriptome database of Pagrus major we studied previously. Conservatism of evolution was investigated by sequence alignment and phylogenetic analysis. Transcripts of Pm-H1.2-like were detected in P. major tissues. The highest expression level was found in gill and skin tissues. Consistent with the data from the transcriptome database, we observed that the expression of Pm-H1.2-like was rapidly induced in nonspecific cytotoxic cells (NCCs) infected with inactivated Vibrio anguillarum. Gene silencing of Pm-H1.2-like by RNAi significantly suppressed the expression of NK-lysin and GZMB in NCCs at 12 h after pathogen stimulation, but had no significant effect on IFN-γ expression. Next, we obtained the fusion proteins rPm-H1.2-like and rPm-H1.2-like (36-80) through prokaryotic expression. ELISA showed that rPm-H1.2-like bound to oligonucleotide (ODN) in a concentration-dependent manner, while no binding activity of rPm-H1.2-like (36-80) with ODN was observed. This study confirmed that Pm-H1.2-like actively participates in the immune response of NCCs to bacterial infection, deepening the understanding of the immune features of histone H1 in fish.
Collapse
Affiliation(s)
- Lianfei Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Maqsood Ahmed Soomro
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Lingshu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Wang S, Ding Q, Zhang Y, Zhang A, Wang Q, Wang R, Wang X, Jin L, Ma S, Wang H. Evolution of Virulence, Fitness, and Carbapenem Resistance Transmission in ST23 Hypervirulent Klebsiella pneumoniae with the Capsular Polysaccharide Synthesis Gene wcaJ Inserted via Insertion Sequence Elements. Microbiol Spectr 2022; 10:e0240022. [PMID: 36222687 PMCID: PMC9769677 DOI: 10.1128/spectrum.02400-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is recognized as a threat worldwide, but the mechanisms underlying its emergence remain unclear. As most CR-hvKP isolates are not hypermucoviscous, we speculated that the evolution of the capsule might result in the convergence of carbapenem resistance and hypervirulence. Here, 2,096 K. pneumoniae isolates were retrospectively collected to screen the ST23-K1 clone, and hypervirulence was roughly defined as being highly resistant to serum killing. The effect of wcaJ on the capsule, virulence, fitness, and resistance acquisition was further analyzed. The capsule gene wcaJ, inserted by ISKpn26/ISKpn74, was identified via whole-genome sequencing in four hvKP, but not hypermucoviscous, isolates. Uronic acid quantitation results revealed that these isolates produced significantly less capsular polysaccharides than NTUH-K2044. A significant increase in capsular production was observed in wcaJ-complemented isolates and confirmed by transmission electron microscopy. Further, all wcaJ-complemented isolates acquired greater resistance to macrophage phagocytosis, and one representative isolate resulted in a significantly higher mortality rate than the parental isolate in mice, indicating that wcaJ inactivation might compromise virulence. However, isolates with wcaJ interruption demonstrated a lower fitness cost and a high conjugation frequency of the blaKPC-2 plasmid, raising concerns about the emergence of carbapenem resistance in hvKP. IMPORTANCE Klebsiella pneumoniae is one of the most common nosocomial pathogens worldwide, and we speculated that the evolution of the capsule might result in the convergence of carbapenem resistance and hypervirulence of K. pneumoniae. The wcaJ gene was first reported to be interrupted by insertion sequence elements in ST23-K1 hypervirulent Klebsiella pneumoniae, resulting in little capsule synthesis, which plays an important role in virulence. We examined the effect of wcaJ on the capsule, virulence, and fitness. Isolates with wcaJ interruption might compromise virulence and demonstrated a lower fitness cost and a high conjugation frequency of the blaKPC-2 plasmid, highlighting its role as a potential factor facilitating hypervirulence and carbapenem resistance.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Anru Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Shuai Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
8
|
Moiana M, Aranda F, de Larrañaga G. A focus on the roles of histones in health and diseases. Clin Biochem 2021; 94:12-19. [PMID: 33895124 DOI: 10.1016/j.clinbiochem.2021.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
Over time, the knowledge on the role of histones has significantly changed. Initially, histones were only known as DNA packaging proteins but later, it was discovered that they act extracellularly as powerful antimicrobial agents and also as potentially self-detrimental agents. Indeed, histones were found to be the most abundant proteins within neutrophil extracellular traps what ultimately highlighted their microbicidal function. In addition, extracellular histones proved to be involved in triggering exacerbated inflammatory and coagulation responses, depending on the cell type affected. Consequently, several investigations were conducted towards studying the potential of histones and their derivatives as either biomarkers or therapeutic target candidates in different diseases in which inflammation and thrombosis have a key pathophysiological role, such as sepsis, thrombosis and different types of cancer. The main objective of this review is to summarize and discuss the current state of the art with regard to both beneficial and harmful roles of histones and also their possible use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mauro Moiana
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina
| | - Federico Aranda
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina
| | - Gabriela de Larrañaga
- Hemostasis and Thrombosis Laboratory, Hospital of Infectious Diseases "F. J. Muñiz", Buenos Aires, Argentina.
| |
Collapse
|
9
|
Zhang Y, Zhao J, Guan L, Mao L, Li S, Zhao J. Histone H4 aggravates inflammatory injury through TLR4 in chlorine gas-induced acute respiratory distress syndrome. J Occup Med Toxicol 2020; 15:31. [PMID: 33062035 PMCID: PMC7545935 DOI: 10.1186/s12995-020-00282-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chlorine gas (Cl2) exposure remains a public health concern in household, occupational, and transportation accidents around the world. The death rate associated with acute respiratory distress syndrome (ARDS) caused by high concentrations of Cl2 is very high, mainly because the pathogenesis of ARDS remains unclear. Histone H4 has been identified as an important endogenous pro-inflammatory molecule. The present study aimed to examine the pathogenic role of histone H4 in Cl2-induced ARDS. Methods ARDS was induced by Cl2 exposure in male C57BL/6 mice. Circulating histone H4, blood gas, pulmonary edema, endothelial activation, and neutrophil infiltration were measured during acute lung injury (ALI). Histone H4 or anti-H4 antibody was administered through the tail vein 1 h prior to Cl2 exposure to study the pathogenic role of histone H4. Toll-like receptor 2 knock-out (Tlr2-KO) and Tlr4-KO mice were used in conjunction with blocking antibody against TLR1, TLR2, TLR4, or TLR6 to explore the mechanism involved in histone H4-mediated injury. Results Cl2 exposure induced a concentration-dependent ALI. The levels of circulating histone H4 were positively correlated with Cl2 concentrations. Pretreatment with intravenous histone H4 further aggravated lethality rate, blood gas, endothelial activation, and neutrophil infiltration, while anti-H4 antibody showed protective effects. Tlr4 deficiency improved lethality rate, blood gas, and pulmonary edema, and prevented endothelial and neutrophil activation caused by Cl2 exposure. More importantly, Tlr4 gene deletion greatly diminished the effect of histone H4 or anti-H4 antibody observed in wild-type (WT) mice. The impact of Tlr2 on inflammatory injury was not significant. The role of TLRs was also validated by endothelial activation mediated by histone H4 in vitro. Conclusions Circulating histone H4 played a pro-inflammatory role in ARDS caused by Cl2. TLR4 was closely involved in histone H4-mediated inflammatory injury. Therefore, intervention targeting histone H4 is potentially protective.
Collapse
Affiliation(s)
- Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Jian Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No.27 Taiping Road, Haidian District, Beijing, 100850 China
| | - Li Guan
- Research Center of Occupational Medicine, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Lijun Mao
- Research Center of Occupational Medicine, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Shuqiang Li
- Research Center of Occupational Medicine, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191 China
| | - Jinyuan Zhao
- Research Center of Occupational Medicine, Peking University Third Hospital, No.49 North Garden Road, Haidian District, Beijing, 100191 China
| |
Collapse
|
10
|
Pal S, Verma J, Mallick S, Rastogi SK, Kumar A, Ghosh AS. Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation. Microbiology (Reading) 2019; 165:891-904. [PMID: 31246167 DOI: 10.1099/mic.0.000827] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shilpa Pal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Sumit Kumar Rastogi
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Akash Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Anindya S. Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| |
Collapse
|
11
|
Pietrocola G, Nobile G, Alfeo MJ, Foster TJ, Geoghegan JA, De Filippis V, Speziale P. Fibronectin-binding protein B (FnBPB) from Staphylococcus aureus protects against the antimicrobial activity of histones. J Biol Chem 2019; 294:3588-3602. [PMID: 30622139 DOI: 10.1074/jbc.ra118.005707] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that can cause both superficial and deep-seated infections. Histones released by neutrophils kill bacteria by binding to the bacterial cell surface and causing membrane damage. We postulated that cell wall-anchored proteins protect S. aureus from the bactericidal effects of histones by binding to and sequestering histones away from the cell envelope. Here, we focused on S. aureus strain LAC and by using an array of biochemical assays, including surface plasmon resonance and ELISA, discovered that fibronectin-binding protein B (FnBPB) is the main histone receptor. FnBPB bound all types of histones, but histone H3 displayed the highest affinity and bactericidal activity and was therefore investigated further. H3 bound specifically to the A domain of recombinant FnBPB with a KD of 86 nm, ∼20-fold lower than that for fibrinogen. Binding apparently occurred by the same mechanism by which FnBPB binds to fibrinogen, because FnBPB variants defective in fibrinogen binding also did not bind H3. An FnBPB-deletion mutant of S. aureus LAC bound less H3 and was more susceptible to its bactericidal activity and to neutrophil extracellular traps, whereas an FnBPB-overexpressing mutant bound more H3 and was more resistant than the WT. FnBPB bound simultaneously to H3 and plasminogen, which after activation by tissue plasminogen activator cleaved the bound histone. We conclude that FnBPB provides a dual immune-evasion function that captures histones and prevents them from reaching the bacterial membrane and simultaneously binds plasminogen, thereby promoting its conversion to plasmin to destroy the bound histone.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy,
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Mariangela J Alfeo
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Timothy J Foster
- the Microbiology Department, Trinity College Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Dublin 2, Ireland
| | - Vincenzo De Filippis
- the Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 36131 Padova, Italy, and
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy, .,the Department of Industrial and Information Engineering, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
D'Cruz AA, Speir M, Bliss-Moreau M, Dietrich S, Wang S, Chen AA, Gavillet M, Al-Obeidi A, Lawlor KE, Vince JE, Kelliher MA, Hakem R, Pasparakis M, Williams DA, Ericsson M, Croker BA. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal 2018; 11:11/546/eaao1716. [PMID: 30181240 DOI: 10.1126/scisignal.aao1716] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophil extracellular trap (NET) formation can generate short-term, functional anucleate cytoplasts and trigger loss of cell viability. We demonstrated that the necroptotic cell death effector mixed lineage kinase domain-like (MLKL) translocated from the cytoplasm to the plasma membrane and stimulated downstream NADPH oxidase-independent ROS production, loss of cytoplasmic granules, breakdown of the nuclear membrane, chromatin decondensation, histone hypercitrullination, and extrusion of bacteriostatic NETs. This process was coordinated by receptor-interacting protein kinase-1 (RIPK1), which activated the caspase-8-dependent apoptotic or RIPK3/MLKL-dependent necroptotic death of mouse and human neutrophils. Genetic deficiency of RIPK3 and MLKL prevented NET formation but did not prevent cell death, which was because of residual caspase-8-dependent activity. Peptidylarginine deiminase 4 (PAD4) was activated downstream of RIPK1/RIPK3/MLKL and was required for maximal histone hypercitrullination and NET extrusion. This work defines a distinct signaling network that activates PAD4-dependent NET release for the control of methicillin-resistant Staphylococcus aureus (MRSA) infection.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Speir
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Bliss-Moreau
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvia Dietrich
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Wang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alyce A Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mathilde Gavillet
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Hematology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Arshed Al-Obeidi
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kate E Lawlor
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3052, Australia
| | - James E Vince
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3052, Australia
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 2018; 22:4617-4629. [PMID: 30085397 PMCID: PMC6156248 DOI: 10.1111/jcmm.13797] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Histones are positively charged nuclear proteins that facilitate packaging of DNA into nucleosomes common to all eukaryotic cells. Upon cell injury or cell signalling processes, histones are released passively through cell necrosis or actively from immune cells as part of extracellular traps. Extracellular histones function as microbicidal proteins and are pro‐thrombotic, limiting spread of infection or isolating areas of injury to allow for immune cell infiltration, clearance of infection and initiation of tissue regeneration and repair. Histone toxicity, however, is not specific to microbes and contributes to tissue and end‐organ injury, which in cases of systemic inflammation may lead to organ failure and death. This review details the processes of histones release in acute inflammation, the mechanisms of histone‐related tissue toxicity and current and future strategies for therapy targeting histones in acute inflammatory diseases.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, China
| | - David Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Döhrmann S, LaRock CN, Anderson EL, Cole JN, Ryali B, Stewart C, Nonejuie P, Pogliano J, Corriden R, Ghosh P, Nizet V. Group A Streptococcal M1 Protein Provides Resistance against the Antimicrobial Activity of Histones. Sci Rep 2017; 7:43039. [PMID: 28220899 PMCID: PMC5318940 DOI: 10.1038/srep43039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Histones are essential elements of chromatin structure and gene regulation in eukaryotes. An unexpected attribute of these nuclear proteins is their antimicrobial activity. A framework for histone release and function in host defense in vivo was revealed with the discovery of neutrophil extracellular traps, a specialized cell death process in which DNA-based structures containing histones are extruded to ensnare and kill bacteria. Investigating the susceptibility of various Gram-positive pathogens to histones, we found high-level resistance by one leading human pathogen, group A Streptococcus (GAS). A screen of isogenic mutants revealed that the highly surface-expressed M1 protein, a classical GAS virulence factor, was required for high-level histone resistance. Biochemical and microscopic analyses revealed that the N-terminal domain of M1 protein binds and inactivates histones before they reach their cell wall target of action. This finding illustrates a new pathogenic function for this classic GAS virulence factor, and highlights a potential innate immune evasion strategy that may be employed by other bacterial pathogens.
Collapse
Affiliation(s)
- Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Christopher N LaRock
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Ericka L Anderson
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Brinda Ryali
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Chelsea Stewart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Poochit Nonejuie
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ross Corriden
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.,Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America.,Department of Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America.,Rady Children's Hospital, San Diego, California, United States of America
| |
Collapse
|
15
|
Rahman S, Gadjeva M. Does NETosis Contribute to the Bacterial Pathoadaptation in Cystic Fibrosis? Front Immunol 2014; 5:378. [PMID: 25157250 PMCID: PMC4127480 DOI: 10.3389/fimmu.2014.00378] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/24/2014] [Indexed: 01/14/2023] Open
Abstract
Significant advances in our understanding of neutrophil biology were made in the past several years. The exciting discovery that neutrophils deploy neutrophil extracellular traps (NETs) to catch pathogens paved the way for a series of additional studies to define the molecular mechanisms of NET generation and the biological significance of NETosis in acute and chronic pathologic conditions. This review highlights the latest knowledge regarding NET structures, deployment, and function, with an emphasis on current understanding of NET proteomes, their conservation, and significance in the context of cystic fibrosis (CF), a condition characterized by excessive extracellular DNA/NET presence. We also discuss how our understanding of NETosis yields novel therapeutic approaches and their applicability to CF.
Collapse
Affiliation(s)
- Samir Rahman
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Mihaela Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|