1
|
Dougherty DA. The Cation-π Interaction in Chemistry and Biology. Chem Rev 2025; 125:2793-2808. [PMID: 39977669 PMCID: PMC11907405 DOI: 10.1021/acs.chemrev.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
The cation-π interaction is an important noncovalent binding force that impacts all areas of chemistry and biology. Extensive computational and gas phase experimental studies have established the potential strength and the essential nature of the interaction. Previous reviews have emphasized studies of model systems and a variety of biological examples. This work includes discussion of those areas but emphasizes other areas that are perhaps less well appreciated. These include the novel cation-π binding ability of alkali metals in water; the application of the cation-π interaction to organic synthesis and chemical biology; cooperative behaviors of multiple cation-π interactions, including adhesive proteins from mussels and similar organisms and the formation and modulation of biomolecular condensates (phase separation); and cation-π interactions involved in recognizing DNA/RNA.
Collapse
Affiliation(s)
- Dennis A. Dougherty
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
3
|
De Oliveira VH, Ullah I, Dunwell JM, Tibbett M. Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110917. [PMID: 32800252 DOI: 10.1016/j.ecoenv.2020.110917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.
Collapse
Affiliation(s)
- Vinicius Henrique De Oliveira
- Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK
| | - Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK.
| |
Collapse
|
4
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
5
|
Santra S, Jana M. Insights into the Sensitivity of Arginine Concentration to Preserve the Folded Form of Insulin Monomer under Thermal Stress. J Chem Inf Model 2020; 60:3105-3119. [PMID: 32479724 DOI: 10.1021/acs.jcim.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arginine, although popularly known as aggregation suppressor additive, has been found to quench proteins' structure and function by destabilizing their conformations. Driven by such controversial evidence, in this work we performed a series of atomistic molecular dynamics simulations of insulin monomer, a biologically active hormone protein, in arginine solution of varying concentrations (0.5, 1, and 2 M) at ambient and elevated temperature (400 K) to explore the arginine concentration driven structure-based stability of the protein. Our study reveals that the flexibility of the protein's structure is dependent on the arginine concentration, and among all the used solutions, 2 M arginine, a "neutral crowder" that mimics the cellular environment, can preserve the native folded form of the protein at ambient temperature in an excellent manner. Further, while the protein unfolds at 400 K in pure water, this solution worked satisfactorily to preserve the protein's folded conformation more firmly than the other solutions. The replica-exchange MD of insulin in 2 M arginine solution further supports the fact. In this aspect an important issue in molecular pharmacology is to identify and recognize the physical origin of the stability of a protein, i.e, in this case, how arginine directs the conformational flexibility of the protein and preserves its native folded form. We identified that the exclusion of arginine from the protein surface increases the local structuration of water around the protein, thereby preserving its "biological water" layer, and makes the protein more hydrated at 2 M concentration as compared to the other arginine solutions. Additionally, our microscopic investigation on the interactions of the protein-solvation layer revealed that the structural heterogeneity of the protein surface, arising from the differential physicochemical nature of the amino acid residues, controls the favorable formation of sluggish water-arginine mixed solvation layer at higher arginine concentration that helps the protein to maintain its structural rigidity. Importantly, apart from the protein-solvent hydrogen-bonding interactions, the anion-pi interactions, established between the carboxyl group of arginine and the aromatic amino acid residues of insulin, were recognized to facilitate the protein to maintain its native folded form at the experimental temperatures.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India
| |
Collapse
|
6
|
Park S, Hwang SY, Shin J, Jo H, Na Y, Kwon Y. A chromenone analog as an ATP-competitive, DNA non-intercalative topoisomerase II catalytic inhibitor with preferences toward the alpha isoform. Chem Commun (Camb) 2019; 55:12857-12860. [PMID: 31598611 DOI: 10.1039/c9cc05524j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5-Hydroxy-2-phenyl-7-(thiiran-2-ylmethoxy)-4H-chromen-4-one (compound 52) was found as a DNA non-intercalative topo II specific catalytic inhibitor by targeting its ATP-binding domain. Showing changes in interaction with Mg2+, it exhibited highly selective properties against the α-isoform with less toxicity, unlike other topo II poisons, such as etoposide.
Collapse
Affiliation(s)
- Seojeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Soo-Yeon Hwang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Jaeho Shin
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Hyunji Jo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
7
|
Alemasova EE, Naumenko KN, Moor NA, Lavrik OI. Y-Box-Binding Protein 1 Stimulates Abasic Site Cleavage. BIOCHEMISTRY (MOSCOW) 2018; 82:1521-1528. [PMID: 29486702 DOI: 10.1134/s0006297917120112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are among the most frequent DNA lesions. The first step in the AP site repair involves the magnesium-dependent enzyme AP endonuclease 1 (APE1) that catalyzes hydrolytic cleavage of the DNA phosphodiester bond at the 5' side of the AP site, thereby generating a single-strand DNA break flanked by the 3'-OH and 5'-deoxyribose phosphate (dRP) groups. Increased APE1 activity in cancer cells might correlate with tumor chemoresistance to DNA-damaging treatment. It has been previously shown that the multifunctional oncoprotein Y-box-binding protein 1 (YB-1) interacts with APE1 and inhibits APE1-catalyzed hydrolysis of AP sites in single-stranded DNAs. In this work, we demonstrated that YB-1 stabilizes the APE1 complex with double-stranded DNAs containing the AP sites and stimulates cleavage of these AP sites at low magnesium concentrations.
Collapse
Affiliation(s)
- E E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
8
|
Kalel R, Mora AK, Ghosh R, Dhavale DD, Palit DK, Nath S. Interaction of a Julolidine-Based Neutral Ultrafast Molecular Rotor with Natural DNA: Spectroscopic and Molecular Docking Studies. J Phys Chem B 2016; 120:9843-53. [DOI: 10.1021/acs.jpcb.6b04811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Kalel
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dilip D. Dhavale
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Dipak K. Palit
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
9
|
Erler J, Zhang R, Petridis L, Cheng X, Smith JC, Langowski J. The role of histone tails in the nucleosome: a computational study. Biophys J 2016; 107:2911-2922. [PMID: 25517156 DOI: 10.1016/j.bpj.2014.10.065] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022] Open
Abstract
Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins.
Collapse
Affiliation(s)
- Jochen Erler
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Ruihan Zhang
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Xiaolin Cheng
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jörg Langowski
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
10
|
Mucić ID, Nikolić MR, Stojanović SĐ. Contribution of cation-π interactions to the stability of Sm/LSm oligomeric assemblies. PROTOPLASMA 2015; 252:947-958. [PMID: 25408427 DOI: 10.1007/s00709-014-0727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
In this work, we have analyzed the influence of cation-π interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the π group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-π interactions is much higher than that of single cation-π interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-π interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81 kcal mol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ΔΔG of binding for residues in the core and also for hot spot residues cation-π bonded across the interface. Secondary structure of the cation-π residues shows that Arg and Lys preferred to be in strand. Among the π residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-π interactions are important in locating one or more of such centers. More than 50 % of the cation-π interacting residues are highly conserved. It is likely that the cation-π interactions contribute significantly to the overall stability of Sm/LSm proteins.
Collapse
Affiliation(s)
- Ivana D Mucić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|