1
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
3
|
Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 2023; 63:249-272. [PMID: 35973713 PMCID: PMC11019858 DOI: 10.1146/annurev-pharmtox-051421-111814] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.
Collapse
Affiliation(s)
- Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Kate L Schole
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Qinchuan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Olurotimi O Mesubi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Klitos Konstantinidis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Departments of Physiology and Genetic Medicine and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Roberts-Craig FT, Worthington LP, O’Hara SP, Erickson JR, Heather AK, Ashley Z. CaMKII Splice Variants in Vascular Smooth Muscle Cells: The Next Step or Redundancy? Int J Mol Sci 2022; 23:ijms23147916. [PMID: 35887264 PMCID: PMC9318135 DOI: 10.3390/ijms23147916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) help to maintain the normal physiological contractility of arterial vessels to control blood pressure; they can also contribute to vascular disease such as atherosclerosis. Ca2+/calmodulin-dependent kinase II (CaMKII), a multifunctional enzyme with four isoforms and multiple alternative splice variants, contributes to numerous functions within VSMCs. The role of these isoforms has been widely studied across numerous tissue types; however, their functions are still largely unknown within the vasculature. Even more understudied is the role of the different splice variants of each isoform in such signaling pathways. This review evaluates the role of the different CaMKII splice variants in vascular pathological and physiological mechanisms, aiming to show the need for more research to highlight both the deleterious and protective functions of the various splice variants.
Collapse
Affiliation(s)
- Finn T. Roberts-Craig
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
| | - Luke P. Worthington
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Samuel P. O’Hara
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Jeffrey R. Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Alison K. Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
| | - Zoe Ashley
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (L.P.W.); (S.P.O.); (J.R.E.); (A.K.H.)
- HeartOtago, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-7646
| |
Collapse
|
5
|
Sun MJ, Teng Z, Fan PS, Chen XG, Liu Y. Bridging micro/nano-platform and airway allergy intervention. J Control Release 2021; 341:364-382. [PMID: 34856226 DOI: 10.1016/j.jconrel.2021.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Allergic airway diseases, with incidence augmenting visibly as industrial development and environmental degradation, are characterized by sneezing, itching, wheezing, chest tightness, airway obstruction, and hyperresponsiveness. Current medical modalities attempt to combat these symptoms mostly by small molecule chemotherapeutants, such as corticosteroids, antihistamines, etc., via intranasal approach which is one of the most noninvasive, rapid-absorbed, and patient-friendly routes. Nevertheless, inherent defects for irritation to respiratory mucosa, drug inactivation and degradation, and rapid drug dispersal to off-target sites are inevitable. Lately, intratracheal micro/nano therapeutic systems are emerging as innovative alternatives for airway allergy interventions. This overview introduces several potential application directions of mic/nano-platform in the treatment of airway allergic diseases, including carriers, therapeutic agents, and immunomodulators. The improvement of the existing drug therapy of respiratory allergy management by micro/nano-platform is described in detail. The challenges of the micro/nano-platform nasal approach in the treatment of airway allergy are summarized and the development of micro/nano-platform is also prospected. Although still a burgeoning area, micro/nano therapeutic systems are gradually turning to be realistic orientations as crucial future alternative therapeutic options in allergic airway inflammation interventions.
Collapse
Affiliation(s)
- Meng-Jie Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Peng-Sheng Fan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Takata T, Araki S, Tsuchiya Y, Watanabe Y. Persulfide Signaling in Stress-Initiated Calmodulin Kinase Response. Antioxid Redox Signal 2020; 33:1308-1319. [PMID: 32460522 DOI: 10.1089/ars.2020.8138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Significance: Calcium ion (Ca2+)/calmodulin (CaM)-dependent protein kinases (CaMKs) are activated by phosphorylation of a crucial threonine residue either by itself (CaMKII) or by upstream kinases, CaMK kinases (CaMKKs) (CaMKI and CaMKIV). CaMKs, present in most mammalian tissues, can phosphorylate many downstream targets, thereby regulating numerous cellular functions. Recent Advances: Aside from canonical post-translational modifications, cysteine-based redox switches in CaMKs affect their enzyme activities. In addition to reactive oxygen species (ROS) and reactive nitrogen species (RNS), reactive sulfur species (RSS) are also recognized as key signaling molecules, regulating protein function through polysulfidation, formation of polysulfides [-S-(S)n-H] on their reactive cysteine residues. To comprehend the biological significance of RSS signaling-related CaMK regulation, here we introduce a novel concept defining CaMKs as RSS targets in stress responses. The stress responses include an irreversible electrophile attack for CaMKI, inflammation for CaMKII, and endoplasmic reticulum stress for CaMKIV. Critical Issues: Development of various human diseases is associated with increased ROS, RNS, and RSS generation. Therefore, depending on specific pathophysiology, RSS could have very particular effects on CaMK functions. Future Directions: How multiple sources and mutual reactions of ROS, RNS, and RSS are coordinated is obscure. Elucidating the mechanisms through applications of enzymology, chemical biology, and mass spectrometry enables to uncover the complexities of redox regulation of CaMK cascades.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan.,Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoma Araki
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yukihiro Tsuchiya
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuo Watanabe
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
7
|
Chehaitly A, Vessieres E, Guihot AL, Henrion D. Flow-mediated outward arterial remodeling in aging. Mech Ageing Dev 2020; 194:111416. [PMID: 33333130 DOI: 10.1016/j.mad.2020.111416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Emilie Vessieres
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Anne-Laure Guihot
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France
| | - Daniel Henrion
- MITOVASC Laboratory and CARFI Facility, INSERM U1083, CNRS UMR 6015, University of Angers, Angers, France.
| |
Collapse
|
8
|
Zhao S, Liu W, Feng C, Zhang X, Cai W, Luo M. Effect and Molecular Mechanisms of Collateral Vessel Growth Mediated by Activation of Transient Receptor Potential Vanilloid Type 1. J Vasc Res 2020; 57:185-194. [PMID: 32526735 DOI: 10.1159/000506516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Information on the function of transient receptor potential vanilloid 1 (TRPV1) in arteriogenesis is limited. We aimed to verify whether TRPV1 is involved in collateral vessel growth in rat hind limbs and elucidate the possible subcellular action mechanisms. Adult Sprague Dawley rats were chosen to establish the hind limb ischemic model and treatment with capsaicin. Angiographies were performed, and tissue was isolated for immunohistochemistry. In vitro, rat aortic endothelial cells (RAECs) were treated with capsaicin and antagonist capsazepine. The RAEC proliferation was determined, and the protein and mRNA levels of Ca2+-dependent transcription factors were assessed. In vivo, the collateral vessels exhibited positive outward remodeling characterized by enhanced inflammatory cell/macrophage accumulation in the adventitia and activated cell proliferation in all layers of the vascular wall and elevated endothelial NO synthetase expression in the rats with hind limb ligation. In RAECs, TRPV1 activation-induced Ca2+-dependent transcriptional factors, nuclear factor of activated T cells 1, calsenilin and myocyte enhancer factor 2C increase, and augmented RAEC proliferation could be a subcellular mechanism for TRPV1 in endothelial cells and ultimately contribute to collateral vessel growth. TRPV1, a novel candidate, positively regulates arteriogenesis, meriting further studies to unravel the potential therapeutic target leading to improved collateral vessel growth for treating ischemic diseases.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengan Feng
- Department of Anatomy & Histology & Embryology, Kunming Medical University, Kunming, China
| | - Xingping Zhang
- Department of Anatomy & Histology & Embryology, Kunming Medical University, Kunming, China
| | - Weijun Cai
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingying Luo
- Department of Anatomy & Histology & Embryology, Kunming Medical University, Kunming, China,
| |
Collapse
|
9
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
10
|
Murthy S, Koval OM, Ramiro Diaz JM, Kumar S, Nuno D, Scott JA, Allamargot C, Zhu LJ, Broadhurst K, Santhana V, Kutschke WJ, Irani K, Lamping KG, Grumbach IM. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity. PLoS One 2017; 12:e0186311. [PMID: 29059213 PMCID: PMC5653296 DOI: 10.1371/journal.pone.0186311] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/28/2017] [Indexed: 01/11/2023] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Olha M. Koval
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Juan M. Ramiro Diaz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Santosh Kumar
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jason A. Scott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Chantal Allamargot
- Central Microscopy Research Facility, Office of Vice President of Research and Economic Development, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda J. Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kim Broadhurst
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Velarchana Santhana
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - William J. Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kaikobad Irani
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| | - Kathryn G. Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Isabella M. Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States of America
| |
Collapse
|
11
|
Doran AC, Ozcan L, Cai B, Zheng Z, Fredman G, Rymond CC, Dorweiler B, Sluimer JC, Hsieh J, Kuriakose G, Tall AR, Tabas I. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest 2017; 127:4075-4089. [PMID: 28972541 DOI: 10.1172/jci94735] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/10/2017] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. Western diet-fed LDL receptor-deficient (Ldlr-/-) mice with myeloid-specific deletion of CaMKII had smaller necrotic cores with concomitantly thicker collagen caps. These lesions demonstrated evidence of enhanced efferocytosis, which was associated with increased expression of the macrophage efferocytosis receptor MerTK. Mechanistic studies revealed that CaMKIIγ-deficient macrophages and atherosclerotic lesions lacking myeloid CaMKIIγ had increased expression of the transcription factor ATF6. We determined that ATF6 induces liver X receptor-α (LXRα), an Mertk-inducing transcription factor, and that increased MerTK expression and efferocytosis in CaMKIIγ-deficient macrophages is dependent on LXRα. These findings identify a macrophage CaMKIIγ/ATF6/LXRα/MerTK pathway as a key factor in the development of necrotic atherosclerotic plaques.
Collapse
Affiliation(s)
- Amanda C Doran
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University, New York, New York, USA
| | - Bishuang Cai
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ze Zheng
- Department of Medicine, Columbia University, New York, New York, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, Albany Medical Center, Albany, New York, USA
| | | | - Bernhard Dorweiler
- Department of Cardiothoracic and Vascular Surgery, Universitätsmedizin Mainz, Johannes-Gutenberg University, Mainz, Germany
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joanne Hsieh
- Department of Medicine, Columbia University, New York, New York, USA
| | | | - Alan R Tall
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics and.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Morris AS, Sebag SC, Paschke JD, Wongrakpanich A, Ebeid K, Anderson ME, Grumbach IM, Salem AK. Cationic CaMKII Inhibiting Nanoparticles Prevent Allergic Asthma. Mol Pharm 2017; 14:2166-2175. [PMID: 28460526 DOI: 10.1021/acs.molpharmaceut.7b00114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Asthma is a common lung disease affecting over 300 million people worldwide and is associated with increased reactive oxygen species, eosinophilic airway inflammation, bronchoconstriction, and mucus production. Targeting of novel therapeutic agents to the lungs of patients with asthma may improve efficacy of treatments and minimize side effects. We previously demonstrated that Ca2+/calmodulin-dependent protein kinase (CaMKII) is expressed and activated in the bronchial epithelium of asthmatic patients. CaMKII inhibition in murine models of allergic asthma reduces key disease phenotypes, providing the rationale for targeted CaMKII inhibition as a potential therapeutic approach for asthma. Herein we developed a novel cationic nanoparticle (NP)-based system for delivery of the potent and specific CaMKII inhibitor peptide, CaMKIIN, to airways.1 CaMKIIN-loaded NPs abrogated the severity of allergic asthma in a murine model. These findings provide the basis for development of innovative, site-specific drug delivery therapies, particularly for treatment of pulmonary diseases such as asthma.
Collapse
Affiliation(s)
- Angie S Morris
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| | - Sara C Sebag
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States
| | - John D Paschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States
| | | | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, Iowa 52242, United States.,Iowa City Veterans Affairs Healthcare System , 601 US-6, Iowa City, Iowa 52246, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa , 115 South Grand Avenue, S228 PHAR, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
14
|
Prasad AM, Ketsawatsomkron P, Nuno DW, Koval OM, Dibbern ME, Venema AN, Sigmund CD, Lamping KG, Grumbach IM. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol 2016; 87:172-179. [PMID: 27658984 DOI: 10.1016/j.vph.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/22/2016] [Accepted: 09/18/2016] [Indexed: 01/21/2023]
Abstract
Angiotensin-II (Ang-II) is a well-established mediator of vascular remodeling. The multifunctional calcium-calmodulin-dependent kinase II (CaMKII) is activated by Ang-II and regulates Erk1/2 and Akt-dependent signaling in cultured smooth muscle cells in vitro. Its role in Ang-II-dependent vascular remodeling in vivo is far less defined. Using a model of transgenic CaMKII inhibition selectively in smooth muscle cells, we found that CaMKII inhibition exaggerated remodeling after chronic Ang-II treatment and agonist-dependent vasoconstriction in second-order mesenteric arteries. These findings were associated with increased mRNA and protein expression of smooth muscle structural proteins. As a potential mechanism, CaMKII reduced serum response factor-dependent transcriptional activity. In summary, our findings identify CaMKII as an important regulator of smooth muscle function in Ang-II hypertension in vivo.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Daniel W Nuno
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Olha M Koval
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Megan E Dibbern
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Ashlee N Venema
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States
| | - Curt D Sigmund
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States; Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kathryn G Lamping
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, United States; Iowa City VA Healthcare System, Iowa City, United States
| | - Isabella M Grumbach
- Department of Medicine, Carver College, University of Iowa, Iowa City, United States; Iowa City VA Healthcare System, Iowa City, United States.
| |
Collapse
|
15
|
Caillon A, Grenier C, Grimaud L, Vessieres E, Guihot AL, Blanchard S, Lelievre E, Chabbert M, Foucher ED, Jeannin P, Beauvillain C, Abraham P, Loufrani L, Delneste Y, Henrion D. The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc Res 2016; 112:515-25. [PMID: 27328880 DOI: 10.1093/cvr/cvw172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR. METHODS AND RESULTS We studied FMR using a model of ligation of feed arteries supplying collateral pathways in the mouse mesenteric arterial bed in vivo. Seven days after ligation, diameter increased by 30% in high flow (HF) arteries compared with normal flow vessels. FMR was absent in mice lacking AT2R. At Day 2, T lymphocytes expressing AT2R were present preferentially around HF arteries. FMR did not occur in athymic (nude) mice lacking T cells and in mice treated with anti-CD3ε antibodies. AT2R activation induced interleukin-17 production by memory T cells. Treatment of nude mice or AT2R-deficient mice with interleukin-17 restored diameter enlargement in HF arteries. Interleukin-17 increased NO-dependent relaxation and matrix metalloproteinases activity, both important in FMR. Remodelling of feeding arteries in the skin flap model of ischaemia was also absent in AT2R-deficient mice and in anti-interleukin-17-treated mice. Finally, remodelling, absent in 12-month-old mice, was restored by a treatment with the AT2R non-peptidic agonist C21. CONCLUSION AT2R-dependent interleukin-17 production by T lymphocyte is necessary for collateral artery growth and could represent a new therapeutic target in ischaemic disorders.
Collapse
Affiliation(s)
- Antoine Caillon
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Céline Grenier
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Linda Grimaud
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Emilie Vessieres
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France
| | - Anne-Laure Guihot
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Simon Blanchard
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Eric Lelievre
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Marie Chabbert
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Etienne D Foucher
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France
| | - Pascale Jeannin
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Céline Beauvillain
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Pierre Abraham
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| | - Laurent Loufrani
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France
| | - Yves Delneste
- UMR CNRS 6299, UMR INSERM 892, Angers University, F-49045 Angers, France Department of Immunology and Allergology, University Hospital, F-49045 Angers, France
| | - Daniel Henrion
- MITOVASC Institute, UMR CNRS 6214, INSERM U1083, Angers University, F-49045 Angers, France Cardiovascular Functions In Vitro (CARFI) Facility, Angers University, F-49045 Angers, France Department of Vascular Medicine, University Hospital, F-49045 Angers, France
| |
Collapse
|
16
|
Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Sci Rep 2016; 6:23416. [PMID: 27079272 PMCID: PMC4832198 DOI: 10.1038/srep23416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) oxidation controls excitability and viability. While hydrogen peroxide (H2O2) affects Ca2+-activated CaMKII in vitro, Angiotensin II (Ang II)-induced CaMKIIδ signaling in cardiomyocytes is Ca2+ independent and requires NADPH oxidase-derived superoxide, but not its dismutation product H2O2. To better define the biological regulation of CaMKII activation and signaling by Ang II, we evaluated the potential for peroxynitrite (ONOO−) to mediate CaMKII activation and downstream Kv4.3 channel mRNA destabilization by Ang II. In vitro experiments show that ONOO− oxidizes and modestly activates pure CaMKII in the absence of Ca2+/CaM. Remarkably, this apokinase stimulation persists after mutating known oxidation targets (M281, M282, C290), suggesting a novel mechanism for increasing baseline Ca2+-independent CaMKII activity. The role of ONOO− in cardiac and neuronal responses to Ang II was then tested by scavenging ONOO− and preventing its formation by inhibiting nitric oxide synthase. Both treatments blocked Ang II effects on Kv4.3, tyrosine nitration and CaMKIIδ oxidation and activation. Together, these data show that ONOO− participates in Ang II-CaMKII signaling. The requirement for ONOO− in transducing Ang II signaling identifies ONOO−, which has been viewed as a reactive damaging byproduct of superoxide and nitric oxide, as a mediator of GPCR-CaMKII signaling.
Collapse
|
17
|
Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 2015; 89:160-7. [PMID: 26475411 PMCID: PMC5075238 DOI: 10.1016/j.yjmcc.2015.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
Abstract
CaMKII is activated by oxidation of methionine residues residing in the regulatory domain. Oxidized CaMKII (ox-CaMKII) is now thought to participate in cardiovascular and pulmonary diseases and cancer. This invited review summarizes current evidence for the role of ox-CaMKII in disease, considers critical knowledge gaps and suggests new areas for inquiry.
Collapse
Affiliation(s)
- Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
18
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Winters CJ, Koval O, Murthy S, Allamargot C, Sebag SC, Paschke JD, Jaffer OA, Carter AB, Grumbach IM. CaMKII inhibition in type II pneumocytes protects from bleomycin-induced pulmonary fibrosis by preventing Ca2+-dependent apoptosis. Am J Physiol Lung Cell Mol Physiol 2015; 310:L86-94. [PMID: 26545899 DOI: 10.1152/ajplung.00132.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/22/2015] [Indexed: 01/25/2023] Open
Abstract
The calcium and calmodulin-dependent kinase II (CaMKII) translates increases in intracellular Ca(2+) into downstream signaling events. Its function in pulmonary pathologies remains largely unknown. CaMKII is a well-known mediator of apoptosis and regulator of endoplasmic reticulum (ER) Ca(2+). ER stress and apoptosis of type II pneumocytes lead to aberrant tissue repair and progressive collagen deposition in pulmonary fibrosis. Thus we hypothesized that CaMKII inhibition alleviates fibrosis in response to bleomycin by attenuating apoptosis and ER stress of type II pneumocytes. We first established that CaMKII was strongly expressed in the distal respiratory epithelium, in particular in surfactant protein-C-positive type II pneumocytes, and activated after bleomycin instillation. We generated a novel transgenic model of inducible expression of the CaMKII inhibitor peptide AC3-I limited to type II pneumocytes (Tg SPC-AC3-I). Tg SPC-AC3-I mice were protected from development of pulmonary fibrosis after bleomycin exposure compared with wild-type mice. CaMKII inhibition also provided protection from apoptosis in type II pneumocytes in vitro and in vivo. Moreover, intracellular Ca(2+) levels and ER stress were increased by bleomycin and significantly blunted with CaMKII inhibition in vitro. These data demonstrate that CaMKII inhibition prevents type II pneumocyte apoptosis and development of pulmonary fibrosis in response to bleomycin. CaMKII inhibition may therefore be a promising approach to prevent or ameliorate the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Olha Koval
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Shubha Murthy
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa
| | - Sara C Sebag
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - John D Paschke
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Omar A Jaffer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - A Brent Carter
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Free Radical and Radiation Biology Graduate Program, University of Iowa, Iowa City, Iowa; Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa; and Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Isabella M Grumbach
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa; and
| |
Collapse
|
20
|
Zhu LJ, Klutho PJ, Scott JA, Xie L, Luczak ED, Dibbern ME, Prasad AM, Jaffer OA, Venema AN, Nguyen EK, Guan X, Anderson ME, Grumbach IM. Oxidative activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis. Vascul Pharmacol 2014; 60:75-83. [PMID: 24418021 DOI: 10.1016/j.vph.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/26/2013] [Accepted: 01/03/2014] [Indexed: 01/19/2023]
Abstract
Activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and reactive oxygen species (ROS) promote neointimal hyperplasia after vascular injury. CaMKII can be directly activated by ROS through oxidation. In this study, we determined whether abolishing the oxidative activation site of CaMKII alters vascular smooth muscle cell (VCMC) proliferation, migration and apoptosis in vitro and neointimal formation in vivo. VSMC isolated from a knock-in mouse with oxidation-resistant CaMKIIδ (CaMKII M2V) displayed similar proliferation but decreased migration and apoptosis. Surprisingly, ROS production and expression of the NADPH oxidase subunits p47 and p22 were decreased in M2V VSMC, whereas superoxide dismutase 2 protein expression was upregulated. In vivo, after carotid artery ligation, no differences in neointimal size or remodeling were observed. In contrast to VSMC, CaMKII expression and autonomous activity were significantly higher in M2V compared to WT carotid arteries, suggesting that an autoregulatory mechanism determines CaMKII activity in vivo. Our findings demonstrate that preventing oxidative activation of CaMKII decreases migration and apoptosis in vitro and suggest that CaMKII regulates ROS production. Our study presents novel evidence that CaMKII expression in vivo is regulated by a negative feedback loop following oxidative activation.
Collapse
Affiliation(s)
- Linda J Zhu
- Department of Medicine, Iowa City, IA, United States
| | | | - Jason A Scott
- Department of Medicine, Iowa City, IA, United States
| | - Litao Xie
- Department of Medicine, Iowa City, IA, United States
| | | | | | | | - Omar A Jaffer
- Department of Medicine, Iowa City, IA, United States
| | | | | | - Xiaoqun Guan
- Department of Medicine, Iowa City, IA, United States
| | - Mark E Anderson
- Department of Medicine, Iowa City, IA, United States; Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Isabella M Grumbach
- Department of Medicine, Iowa City, IA, United States; Iowa City VA Medical Center, Iowa City, IA, United States.
| |
Collapse
|