1
|
Fanelli E, Vovlas A, D'Addabbo T, De Luca F. Molecular mechanism of Cinnamomum zeylanicum and Citrus aurantium essential oils against the root-knot nematode, Meloidogyne incognita. Sci Rep 2025; 15:6077. [PMID: 39972076 PMCID: PMC11840038 DOI: 10.1038/s41598-025-90529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
The root-knot nematode Meloidogyne incognita is the most harmful and destructive nematode species due to its widespread distribution and its ability to destroy a wide range of agriculturally and economically important crops. Plant-derived essential oils (EO) are one of the promising strategies for nematode management showing high nematicidal potential. Very little is known about the molecular mechanisms activated by EOs in M. incognita. In our study, we assessed the effects of Cinnamomum zeylanicum, Citrus aurantium and the chemical nematicide Oxamyl on the mortality of M. incognita juveniles (J2) at different doses and exposure. The toxicity of C. zeylanicum and C. aurantium EOs to M. incognita J2 was largely different, peaking 94.7 and 26.7% mortality rates after a 24-hour exposure to 100 µg mL- 1 EO concentrations, respectively. The different nematicidal activity of the two EOs was also confirmed by their LC50 values, ranging between 0.1 and 399 mg mL- 1 concentrations for the 24-hour treatment, respectively.The sublethal dose (0.78 µg mL- 1), the concentration that does not cause mortality but still triggers physiological responses, was chosen for both EOs and Oxamyl to investigate the expression levels of Mi-ace-1, Mi-ace-2, and Mi-hsp90, involved in host finding processes, and Mi-far-1, involved in the cuticle protection, by using real time PCR. Our results reveal that C. zeylanicum is toxic at lower doses than C. aurantium. The different expression level of Mi-far-1 in J2s treated with C. zeylanicum suggests a different action mode compared to C. aurantium and Oxamyl. Understanding the action mode of these compounds at molecular level will help to develop more potent and effective nematicides safer for environment and humans.
Collapse
Affiliation(s)
- Elena Fanelli
- Institute for Sustainable Plant Protection-CNR, Via Amendola 122/D, Bari, 70126, Italy
| | - Alessio Vovlas
- Institute for Sustainable Plant Protection-CNR, Via Amendola 122/D, Bari, 70126, Italy
| | - Trifone D'Addabbo
- Institute for Sustainable Plant Protection-CNR, Via Amendola 122/D, Bari, 70126, Italy
| | - Francesca De Luca
- Institute for Sustainable Plant Protection-CNR, Via Amendola 122/D, Bari, 70126, Italy.
| |
Collapse
|
2
|
Celi M, Vazzana M, Manachini B. Heat Shock Proteins as Potential Indicators of Induced Stress in Nematodes. Methods Mol Biol 2024; 2756:343-350. [PMID: 38427304 DOI: 10.1007/978-1-0716-3638-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Heat shock proteins (HSPs) in all animals studied to date constitute potential indicators of stress, under various environmental conditions. The goal of this chapter is to show, for the first time, the suitability of the approach based on evaluation of the expression levels of heat shock proteins, as good indicators of stress induced in nematodes by the cultivation of resistant plant varieties or by other potential stressors.
Collapse
Affiliation(s)
- Monica Celi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Barbara Manachini
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Maiti S, Picard D. Cytosolic Hsp90 Isoform-Specific Functions and Clinical Significance. Biomolecules 2022; 12:1166. [PMID: 36139005 PMCID: PMC9496497 DOI: 10.3390/biom12091166] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone and a key regulator of proteostasis under both physiological and stress conditions. In mammals, there are two cytosolic Hsp90 isoforms: Hsp90α and Hsp90β. These two isoforms are 85% identical and encoded by two different genes. Hsp90β is constitutively expressed and essential for early mouse development, while Hsp90α is stress-inducible and not necessary for survivability. These two isoforms are known to have largely overlapping functions and to interact with a large fraction of the proteome. To what extent there are isoform-specific functions at the protein level has only relatively recently begun to emerge. There are studies indicating that one isoform is more involved in the functionality of a specific tissue or cell type. Moreover, in many diseases, functionally altered cells appear to be more dependent on one particular isoform. This leaves space for designing therapeutic strategies in an isoform-specific way, which may overcome the unfavorable outcome of pan-Hsp90 inhibition encountered in previous clinical trials. For this to succeed, isoform-specific functions must be understood in more detail. In this review, we summarize the available information on isoform-specific functions of mammalian Hsp90 and connect it to possible clinical applications.
Collapse
Affiliation(s)
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Geneve, Switzerland
| |
Collapse
|
4
|
Wititkornkul B, Hulme BJ, Tomes JJ, Allen NR, Davis CN, Davey SD, Cookson AR, Phillips HC, Hegarty MJ, Swain MT, Brophy PM, Wonfor RE, Morphew RM. Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens 2021; 10:pathogens10070912. [PMID: 34358062 PMCID: PMC8308605 DOI: 10.3390/pathogens10070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Collapse
Affiliation(s)
- Boontarikaan Wititkornkul
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Nathan R. Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Sarah D. Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Matthew J. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Ruth E. Wonfor
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| |
Collapse
|
5
|
Fanelli E, Troccoli A, Tarasco E, De Luca F. Molecular Characterization and Functional Analysis of the Hb-hsp90-1 Gene in Relation to Temperature Changes in Heterorhabditis bacteriophora. Front Physiol 2021; 12:615653. [PMID: 33732162 PMCID: PMC7959791 DOI: 10.3389/fphys.2021.615653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding how entomopathogenic nematodes respond to temperature changes and have adapted to the local environment is crucial to improve their potential as biocontrol agents. In order to improve understanding of Heterorhabditis bacteriophora's potential adaptability to future climate changes, full-length cDNA and the corresponding gene of heat shock protein 90 (Hsp90) were isolated and fully characterized. The reproductive potential of the Apulian strain of H. bacteriophora increased when the temperature rose from 23 to 30°C, but no reproduction was found at 12°C. Expression analyses revealed that Hb-hsp90-1 was differentially expressed in Infective Juveniles (IJs) and adults (hermaphrodites, females and males). Up-regulation of Hb-hsp90-1 was higher during the recovery process in Galleria mellonella larvae than adults, thus confirming the protective role of Hb-hsp90-1 in coping with the host environment. Silencing of Hb-hsp90-1 resulted in a significant reduction (76%) in the expression level. Silenced IJs took longer than untreated nematodes to infect G. mellonella, showing that Hb-hsp90-1 could be also involved in chemosensation. Furthermore, the number of adults and IJs recovered from G. mellonella infected with silenced nematodes and incubated at 30°C was higher than that obtained from G. mellonella infected with untreated nematodes. These data confirm the crucial role of Hb-hsp90-1 allowing acclimation to increased temperatures and modulation of the recovery process.
Collapse
Affiliation(s)
- Elena Fanelli
- Institute for Sustainable Plant Protection-CNR, Bari, Italy
| | | | - Eustachio Tarasco
- Institute for Sustainable Plant Protection-CNR, Bari, Italy
- Section of Entomology and Zoology, Department of Soil, Plant and Food Sciences, University of Bari “A. Moro”, Bari, Italy
| | | |
Collapse
|
6
|
Girstmair H, Tippel F, Lopez A, Tych K, Stein F, Haberkant P, Schmid PWN, Helm D, Rief M, Sattler M, Buchner J. The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 2019; 10:3626. [PMID: 31399574 PMCID: PMC6689086 DOI: 10.1038/s41467-019-11518-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
The molecular chaperone Hsp90 is an important regulator of proteostasis. It has remained unclear why S. cerevisiae possesses two Hsp90 isoforms, the constitutively expressed Hsc82 and the stress-inducible Hsp82. Here, we report distinct differences despite a sequence identity of 97%. Consistent with its function under stress conditions, Hsp82 is more stable and refolds more efficiently than Hsc82. The two isoforms also differ in their ATPases and conformational cycles. Hsc82 is more processive and populates closed states to a greater extent. Variations in the N-terminal ATP-binding domain modulate its dynamics and conformational cycle. Despite these differences, the client interactomes are largely identical, but isoform-specific interactors exist both under physiological and heat shock conditions. Taken together, changes mainly in the N-domain create a stress-specific, more resilient protein with a shifted activity profile. Thus, the precise tuning of the Hsp90 isoforms preserves the basic mechanism but adapts it to specific needs. S. cerevisiae encodes two Hsp90 isoforms, the constitutively expressed Hsc82 and stress-inducible Hsp82 that are 97% identical. Here, the authors combine a range of biophysical methods and show that they differ in their enzymatic properties, resilience to stress and client range, which suggests that they evolved to provide fine-tuned chaperone assistance under physiological and stress conditions.
Collapse
Affiliation(s)
- Hannah Girstmair
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany
| | - Franziska Tippel
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Katarzyna Tych
- Center for Integrated Protein Science at the Department of Physics, Technische Universität München, 85748 Garching, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, 69117, Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, 69117, Heidelberg, Germany
| | - Philipp Werner Norbert Schmid
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany
| | - Dominic Helm
- Proteomics Core Facility, EMBL Heidelberg, 69117, Heidelberg, Germany
| | - Matthias Rief
- Center for Integrated Protein Science at the Department of Physics, Technische Universität München, 85748 Garching, Germany
| | - Michael Sattler
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748, Garching, Germany.
| |
Collapse
|