1
|
Guangxin L, Guangfeng L, Ce L, Hongling M, Yiqin D, Changhong C, Jianjun J, Sigang F, Juan F, Li L, Zhendong Q, Zhixun G. Genome sequencing analysis and validation of infestation-related functional genes of Vibrio parahaemolyticus LG2206 isolated from the hepatopancreas of diseased mud crab (Scylla paramamosain) in South China. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109854. [PMID: 39179188 DOI: 10.1016/j.fsi.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.
Collapse
Affiliation(s)
- Liu Guangxin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liu Guangfeng
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Li Ce
- Zhaoqing Aquatic Technology Extension Center, Zhaoqing, 526060, China
| | - Ma Hongling
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Deng Yiqin
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Cheng Changhong
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jiang Jianjun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fan Sigang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Feng Juan
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Qin Zhendong
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Guo Zhixun
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
2
|
Zhang Y, Lai Y, Zhou X, Zhu F. The Role of microRNA-133 in Hemocyte Proliferation and Innate Immunity of Scylla paramamosain. Front Immunol 2022; 12:812717. [PMID: 35154084 PMCID: PMC8828940 DOI: 10.3389/fimmu.2021.812717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are important signaling regulators that are involved in regulating the innate immunity of crustacean. However, few studies focus on the role of crustacean miRNAs in the cellular immunity have been reported. In this study, we showed that the expression of miR-133 was significantly up-regulated in the mud crab Scylla paramamosain after infection by white spot syndrome virus (WSSV) or Vibrio parahaemolyticus. The anti-miRNA oligonucleotide AMO-miR-133 was used to knock down miR-133 expression in S. paramamosain. The number of WSSV copies increased significantly in WSSV-infected crabs after miR-133 knockdown. Knockdown of miR-133 also enhanced the mortality rates of WSSV-infected and V. parahaemolyticus-infected mud crabs, and it significantly enhanced the expression of the astakine, which was confirmed by real-time quantitative PCR and western blot analysis. The data also indicate that miR-133 may affect hemocyte proliferation in S. paramamosain by regulating astakine expression. miR-133 Knockdown enhanced the apoptosis or phagocytosis of crab hemocytes, and increased the mortality of mud crabs after WSSV or V. parahaemolyticus infection. These results indicate that miR-133 is involved in the host immune response to WSSV and V. parahaemolyticus infection in mud crabs. Taken together, our research provides new insights for the control of viral or vibrio diseases in S. paramamosain.
Collapse
Affiliation(s)
- Yunfei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
3
|
Vogt G. Studying phenotypic variation and DNA methylation across development, ecology and evolution in the clonal marbled crayfish: a paradigm for investigating epigenotype-phenotype relationships in macro-invertebrates. Naturwissenschaften 2022; 109:16. [PMID: 35099618 DOI: 10.1007/s00114-021-01782-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Animals can produce different phenotypes from the same genome during development, environmental adaptation and evolution, which is mediated by epigenetic mechanisms including DNA methylation. The obligatory parthenogenetic marbled crayfish, Procambarus virginalis, whose genome and methylome are fully established, proved very suitable to study this issue in detail. Comparison between developmental stages and DNA methylation revealed low expression of Dnmt methylation and Tet demethylation enzymes from the spawned oocyte to the 256 cell embryo and considerably increased expression thereafter. The global 5-methylcytosine level was 2.78% at mid-embryonic development and decreased slightly to 2.41% in 2-year-old adults. Genetically identical clutch-mates raised in the same uniform laboratory setting showed broad variation in morphological, behavioural and life history traits and differences in DNA methylation. The invasion of diverse habitats in tropical to cold-temperate biomes in the last 20 years by the marbled crayfish was associated with the expression of significantly different phenotypic traits and DNA methylation patterns, despite extremely low genetic variation on the whole genome scale, suggesting the establishment of epigenetic ecotypes. The evolution of marbled crayfish from its parent species Procambarus fallax by autotriploidy a few decades ago was accompanied by a significant increase in body size, fertility and life span, a 20% reduction of global DNA methylation and alteration of methylation in hundreds of genes, suggesting that epigenetic mechanisms were involved in speciation and fitness enhancement. The combined analysis of phenotypic traits and DNA methylation across multiple biological contexts in the laboratory and field in marbled crayfish may serve as a blueprint for uncovering the role of epigenetic mechanisms in shaping of phenotypes in macro-invertebrates.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Boonchuen P, Jaree P, Somboonviwat K, Somboonwiwat K. Regulation of shrimp prophenoloxidase activating system by lva-miR-4850 during bacterial infection. Sci Rep 2021; 11:3821. [PMID: 33589707 PMCID: PMC7884684 DOI: 10.1038/s41598-021-82881-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs) suppress gene expression and regulate biological processes. Following small RNA sequencing, shrimp hemocytes miRNAs differentially expressed in response to acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VPAHPND) were discovered and some were confirmed by qRT-PCR. VPAHPND-responsive miRNAs were predicted to target several genes in various immune pathways. Among them, lva-miR-4850 is of interest because its predicted target mRNAs are two important genes of the proPO system; proPO2 (PO2) and proPO activating factor 2 (PPAF2). The expression of lva-miR-4850 was significantly decreased after VPAHPND infection, whereas those of the target mRNAs, PO2 and PPAF2, and PO activity were significantly upregulated. Introducing the lva-miR-4850 mimic into VPAHPND-infected shrimps caused a reduction in the PO2 and PPAF2 transcript levels and the PO activity, but significantly increased the number of bacteria in the VPAHPND targeted tissues. This result inferred that lva-miR-4850 plays a crucial role in regulating the proPO system via suppressing expression of PPAF2 and PO2. To fight against VPAHPND infection, shrimp downregulated lva-miR-4850 expression resulted in proPO activation.
Collapse
Affiliation(s)
- Pakpoom Boonchuen
- grid.7922.e0000 0001 0244 7875Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattarunda Jaree
- grid.10223.320000 0004 1937 0490Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom Thailand
| | - Kulwadee Somboonviwat
- grid.9723.f0000 0001 0944 049XFaculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Sriracha, Chonburi Thailand
| | - Kunlaya Somboonwiwat
- grid.7922.e0000 0001 0244 7875Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Ren X, Lin S, Kong T, Gong Y, Ma H, Zheng H, Zhang Y, Li S. The miRNAs profiling revealed by high-throughput sequencing upon WSSV infection in mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2020; 100:427-435. [PMID: 32147373 DOI: 10.1016/j.fsi.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
microRNAs (miRNAs) are known to regulate various immune functions by silencing the target genes in both vertebrates and invertebrates. However, in mud crab Scylla paramamosain, the role of miRNAs during the response to virus invasion remains unclear. To investigate the roles of miRNAs in S. paramamosain during virus infection, the mud crab was challenged with white spot syndrome virus (WSSV) and then subjected to the transcriptional analysis at different conditions. The results of high-throughput sequencing revealed that 940,379 and 1,306,023 high-quality mappable reads were detected in the hemocyte of normal and WSSV-infected mud crabs, respectively. Besides, the total number of 261 unique miRNAs were identified. Among them, 131 miRNAs were specifically expressed in the hemocytes of normal mud crabs, 46 miRNAs were specifically transcribed in those of WSSV-infected individuals, the other 84 miRNAs were expressed in both normal and WSSV-infected individuals. Furthermore, a number of 152 (89 down-regulated and 63 up-regulated) miRNAs were found to be differentially expressed in the WSSV-infected hemocytes, normalized to the controls. The identified miRNAs were subjected to GO analysis and target gene prediction and the results suggested that the differentially regulated miRNAs were mainly correlated with the changes of the immune responses of the hemocytes, including phagocytosis, melanism, and apoptosis as well. Taken together, the results demonstrated that the expressed miRNAs during the virus infection were mainly involved in the regulation of immunological pathways in mud crabs. Our findings not only enrich the understanding of the functions of miRNAs in the innate immune system but also provide some novel potential targets for the prevention of WSSV infection in crustaceans.
Collapse
Affiliation(s)
- Xin Ren
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Zhang Z, Zhang W, Mu C, Li R, Song W, Ye Y, Shi C, Liu L, Wang H, Wang C. Identification and characterization of a novel galectin from the mud crab Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2020; 98:699-709. [PMID: 31726099 DOI: 10.1016/j.fsi.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Galectins are a family of β-galactoside-binding lectins that play key roles in the invertebrate innate immunity system, but no galectin genes have been identified in the mud crab (Scylla paramamosain) so far. The present study is the first to clone a galectin gene (SpGal) from S. paramamosain, by the rapid amplification of cDNA ends technique based on expressed sequence tags. The full-length cDNA of SpGal was 3142 bp. Its open reading frame encoded a polypeptide of 280 amino acids containing a GLECT/Gal-bind lectin domain and a potential N-glycosylation site. The deduced amino acid sequence and multi-domain organization of SpGal were highly similar to those of invertebrate galectins, and phylogenetic analysis showed that SpGal was closely related to galectin isolated from Portunus trituberculatus. The mRNA transcripts of SpGal were found to be constitutively expressed in a wide range of tissues, with its expression level being higher in the hepatopancreas, gill, and hemocytes. The mRNA expression level of SpGal increased rapidly after the crabs were stimulated by Vibrio alginolyticus, and the maximum expression appeared at 6 h after the challenge. The lipopolysaccharide-binding ability of SpGal was dependent on its concentration, and it also exhibited agglutination activity with three Gram-negative (Aeromonas hydrophila, Chryseobacterium indologenes and Vibrio alginolyticus) and three Gram-positive (Bacillus aquimaris, Staphylococcus aureus and Micrococcus lysodeik) bacterial strains. In addition, hemagglutination activity with rabbit erythrocytes was observed in the absence of d-galactose. These results indicate that SpGal in S. paramamosain acts as a pattern recognition receptor to recognize a broad spectrum of microbes. The findings together indicate that SpGal plays an important role in the innate immune mechanisms of S. paramamosain against pathogenic infection.
Collapse
Affiliation(s)
- Zhouyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Weijia Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Huan Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Xu P, Guo H, Wang H, Xie Y, Lee SC, Liu M, Zheng J, Mao X, Wang H, Liu F, Wan C, Qin S, Liu Y, Zhao M, Wang L. Identification and profiling of microRNAs responsive to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Hereditas 2019; 156:34. [PMID: 31708719 PMCID: PMC6829971 DOI: 10.1186/s41065-019-0110-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cadmium (Cd) is a ubiquitous environmental toxicant for aquatic animals. The freshwater crab, Sinopotamon henanense (S. henanense), is a useful model for monitoring Cd exposure since it is widely distributed in sediments whereby it tends to accumulate several toxicants, including Cd. In the recent years, the toxic effects of Cd in the hepatopancreas of S. henanense have been demonstrated by a series of biochemical analysis and ultrastructural observations as well as the deep sequencing approaches and gene expression profile analysis. However, the post-transcriptional regulatory network underlying Cd toxicity in S.henanense is still largely unknown. Results The miRNA transcriptional profile of the hepatopancreas of S. henanense was used to investigate the expression levels of miRNAs in response to Cd toxicity. In total, 464 known miRNAs and 191 novel miRNAs were identified. Among these 656 miRNAs, 126 known miRNAs could be matched with the miRNAs of Portunus trituberculatus, Eriocheir sinensis and Scylla paramamosain. Furthermore, a total of 24 conserved miRNAs were detected in these four crab species. Fifty-one differentially expressed miRNAs were identified in the Cd-exposed group, with 31 up-regulated and 20 down-regulated. Eight of the differentially expressed miRNAs were randomly selected and verified by the quantitative real-time PCR (qRT-PCR), and there was a general consistency (87.25%) between the qRT-PCR and miRNA transcriptome data. A total of 5258 target genes were screened by bioinformatics prediction. GO term analysis showed that, 17 GO terms were significantly enriched, which were mainly related to the regulation of oxidoreductase activity. KEGG pathway analysis showed that 18 pathways were significantly enriched, which were mainly associated with the biosynthesis, modification and degradation of proteins. Conclusion In response to Cd toxicity, in the hepatopancreas of S. henanense, the expressions of significant amount of miRNAs were altered, which may be an adaptation to resist the oxidative stress induced by Cd. These results provide a basis for further studies of miRNA-mediated functional adaptation of the animal to combat Cd toxicity.
Collapse
Affiliation(s)
- Peng Xu
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China.,2Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Huiqin Guo
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Huihui Wang
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Yuxin Xie
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Shao Chin Lee
- 3School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 China.,1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Ming Liu
- 4State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China.,5University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jian Zheng
- Department of Cardiopulmonary Function Examination, Shanxi Provincial Cancer Hospital, Taiyuan, 030013 China
| | - Xiuli Mao
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Huan Wang
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| | - Fatao Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092 China
| | - Chunling Wan
- 2Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Shengying Qin
- 2Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Yun Liu
- 8Department of Oncology, Fudan University Pudong Medical Center, Shanghai, 201300 China
| | - Meirong Zhao
- 9Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Lan Wang
- 1School of Life Science, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan, 030006 People's Republic of China
| |
Collapse
|
8
|
Qiao H, Jiang S, Xiong Y, Fu H, Zhang W, Wang Y, Gong Y, Jin S, Wu Y. Integrated analysis of differentially expressed microRNAs and mRNAs to screen miRNAs and genes related to reproduction in Macrobrachium nipponense. 3 Biotech 2019; 9:327. [PMID: 31406649 PMCID: PMC6689314 DOI: 10.1007/s13205-019-1847-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Female Macrobrachium nipponense has the characteristic of short sexual maturity during the breeding season, which can increase breeding risk and lead to prevalent female individual miniaturization. In this study, we characterized micro (mi)RNA-seq data of the eyestalk (E) and cerebral ganglia (B) of female M. nipponense during breeding and non-breeding seasons. A total of 393 and 189 differentially expressed miRNAs (DE miRNAs) were identified in BSE vs. NBSE and BSB vs. NBSB, respectively. The most abundant up- and down-regulated DE miRNAs were miR-124, miR-14, and miR-7. Enrichment analysis showed that DE miRNA target genes were mainly involved in 'metabolic process' and 'binding', and were associated with 'neurohormonal regulation' and 'photoreceptor activity' signaling pathways. Integrated analysis of miRNA-mRNA expression showed that the most abundant DE miRNAs were miR-14 and miR-278 in BSE vs. NBSE and BSB vs. NBSB, respectively. Four pairs of DE miRNAs and their corresponding target annotated genes were selected from the DE miRNA-mRNA interaction network (bmo-miR-316-5p/opsin protein, ame-miR-125/skeletal muscle actin 8, dmo-miR-278/sugar transporter, and tca-miR-3885-5p/5-HT1 receptor). Gene expression analysis of these four pairs in different ovary development stages showed their potential regulatory roles in ovary maturation.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yabing Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| |
Collapse
|
9
|
Waiho K, Fazhan H, Zhang Y, Zhang Y, Li S, Zheng H, Liu W, Ikhwanuddin M, Ma H. Gonadal microRNA Expression Profiles and Their Potential Role in Sex Differentiation and Gonadal Maturation of Mud Crab Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:320-334. [PMID: 30835008 DOI: 10.1007/s10126-019-09882-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Although the sexual dimorphism in terms of gonadal development and gametogenesis of mud crab has been described, the internal regulating mechanism and sex differentiation process remain unclear. A comparative gonadal miRNA transcriptomic study was conducted to identify miRNAs that are differentially expressed between testes and ovaries, and potentially uncover miRNAs that might be involved in sex differentiation and gonadal maturation mechanisms of mud crabs (Scylla paramamosain). A total of 10 known miRNAs and 130 novel miRNAs were identified, among which 54 were differentially expressed. Target gene prediction revealed a significant enrichment in 30 KEGG pathways, including some reproduction-related pathways, e.g. phosphatidylinositol signalling system and inositol phosphate metabolism pathways. Further analysis on six differentially expressed known miRNAs, six differentially expressed novel miRNAs and their reproduction-related putative target genes shows that both miRNAs and putative target genes showed stage-specific expression during gonadal maturation, suggesting their potential regulatory roles in sex differentiation and reproductive development. This study reveals the sex-biased miRNA profile and establishes a solid foundation for understanding the sex differentiation and gonadal maturation mechanisms of S. paramamosain.
Collapse
Affiliation(s)
- Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia.
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
10
|
Wang H, Wei H, Tang L, Lu J, Mu C, Wang C. Identification and characterization of miRNAs in the gills of the mud crab (Scylla paramamosain) in response to a sudden drop in salinity. BMC Genomics 2018; 19:609. [PMID: 30107782 PMCID: PMC6092764 DOI: 10.1186/s12864-018-4981-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mud crab (Scylla paramamosain) is a euryhaline and commercially important species. MiRNAs participate in the regulation of many physiological activities. RESULTS The miRNA transcriptome of the gills of S. paramamosain was used to investigate the expression profiles of miRNAs in response to a sudden drop in salinity. In total, seven known miRNAs and 43 novel miRNAs were identified, with 18 differentially expressed small RNAs. Fourteen thousand nine hundred fifty-one differentially expressed miRNAs target genes were screened by prediction. GO analysis of differentially expressed miRNAs target genes indicated that 578 genes associated with cellular processes, 523 associated with metabolic processes, and 422 associated with single-organism processes were the most strongly affected by a sudden drop in salinity from 23‰ to 3‰. KEGG pathway analysis showed 14 pathways were related to amino acid metabolism, which plays an important role in osmoregulation. Besides, several pathways were associated with starch and sucrose metabolism (ko00500), glycosaminoglycan degradation (ko00531), and galactose metabolism (ko00052). CONCLUSIONS S. paramamosain regulated osmotic pressure and energy balance by regulating target genes to adapt to a sudden changes in salinity. These results provided a basis for further investigations of miRNA-modulating networks underlying the osmoregulation of S. paramamosain.
Collapse
Affiliation(s)
- Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Junkai Lu
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
11
|
Ning MX, Xiu YJ, Bi JX, Liu YH, Hou LB, Ding ZF, Gu W, Wang W, Meng QG. Interaction of heat shock protein 60 (HSP60) with microRNA in Chinese mitten crab during Spiroplasma eriocheiris infection. DISEASES OF AQUATIC ORGANISMS 2017; 125:207-215. [PMID: 28792419 DOI: 10.3354/dao03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heat shock protein 60 from the Chinese mitten crab Eriocheir sinensis (EsHSP60) was previously identified in relation to Spiroplasma eriocheiris infection by isobaric tags for relative and absolute quantitation labelling followed by liquid chromatography-tandem mass spectrometry. In the present study, to validate the immune function of this protein, the cDNA of the EsHSP60 gene was cloned. Various crab tissues were assessed using real-time PCR, which showed that EsHSP60 transcription occurred in all tissues examined. The expression profiles of EsHSP60 in haemolymph at transcription and protein levels when infected with S. eriocheiris were investigated by real-time PCR and Western blot analysis, respectively. A significant increase of EsHSP60 transcription and protein expression appeared post-injection in response to S. eriocheiris infection when compared to the control group. The double-luciferase reporter gene assay showed that the microRNA PC-533-3p interacted with the 3'-untranslated region of EsHSP60 and inhibited the translation of EsHSP60. The expression profiles of PC-533-3p during S. eriocheiris infection were also investigated by real-time PCR. However, the change tendency of PC-533-3p was opposite to that of the EsHSP60 after S. eriocheiris challenge. These data indicate that the EsHSP60 proteins may play an important role in mediating the immune responses of E. sinensis to an S. eriocheiris challenge.
Collapse
Affiliation(s)
- Ming-Xiao Ning
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Identification and profiling of growth-related microRNAs of the swimming crab Portunus trituberculatus by using Solexa deep sequencing. Mar Genomics 2016; 28:113-120. [PMID: 27095170 DOI: 10.1016/j.margen.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression by post-transcriptional repression of mRNAs. The swimming crab Portunus trituberculatus is one of the most important crustacean species for aquaculture in China. However, to date no miRNAs have been reported to for modulating growth in P. trituberculatus. To investigate miRNAs involved in the growth of this species, we constructed six small RNA libraries for big individuals (BIs) and small individuals (SIs) from a highly inbred family. Six mixed RNA pools of five tissues (eyestalk, gill, heart, hepatopancreas, and muscle) were obtained. By aligning sequencing data with those for known miRNAs, a total of 404 miRNAs, including 339 known and 65 novel miRNAs, were identified from the six libraries. MiR-100 and miR-276a-3p were among the most prominent miRNA species. We identified seven differentially expressed miRNAs between the BIs and SIs, which were validated using real-time PCR. Preliminary analyzes of their putative target genes and GO and KEGG pathway analyzes showed that these differentially expressed miRNAs could play important roles in global transcriptional depression and cell differentiation of P. trituberculatus. This study reveals the first miRNA profile related to the body growth of P. trituberculatus, which would be particularly useful for crab breeding programs.
Collapse
|
13
|
Lv J, Liu P, Gao B, Li J. The identification and characteristics of salinity-related microRNAs in gills of Portunus trituberculatus. Cell Stress Chaperones 2016; 21:63-74. [PMID: 26373863 PMCID: PMC4679733 DOI: 10.1007/s12192-015-0641-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/03/2015] [Accepted: 09/01/2015] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate gene expression in organisms. To understand the underlying mechanisms behind the molecular response of the crab to low salt-stress, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs under low salinity challenged. Two mixed RNA pool libraries of gill tissues from low salinity challenged (LC) and the control groups (NC) were sequenced on the Illumina platform. A total of 6,166,057 and 7,032,973 high-quality reads were obtained from the NC and LC libraries, respectively. Sixty-seven miRNAs consisting of 16 known and 51 novel ones were identified, among which, 12 miRNAs were differentially expressed in LC compared to NC. Thirty-four of the target genes predicted were differentially expressed in the opposite direction to the miRNAs, which were involved in crucial processes related to osmoregulation by gene ontology (GO) functional enrichment analysis, such as anion transport processes (GO:0006820) and chitin metabolic process (GO:0006030). These results provide a basis for further investigation of the miRNA-modulating networks in osmoregulation of Portunus trituberculatus.
Collapse
Affiliation(s)
- Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China and Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China and Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China and Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China and Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China.
| |
Collapse
|
14
|
Huang WS, Duan LP, Huang B, Zhou LH, Liang Y, Tu CL, Zhang FF, Nie P, Wang T. Identification of three IFN-γ inducible lysosomal thiol reductase ( GILT )-like genes in mud crab Scylla paramamosain with distinct gene organizations and patterns of expression. Gene 2015; 570:78-88. [DOI: 10.1016/j.gene.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/17/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022]
|
15
|
Abstract
Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans.
Collapse
Affiliation(s)
- Yaodong He
- Ocean College, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chenyu Ju
- Collaborative Innovation Center of Deep-sea Biology and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- Collaborative Innovation Center of Deep-sea Biology and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
16
|
Transcriptome and expression profiling analysis of the hemocytes reveals a large number of immune-related genes in mud crab Scylla paramamosain during Vibrio parahaemolyticus infection. PLoS One 2014; 9:e114500. [PMID: 25486443 PMCID: PMC4259333 DOI: 10.1371/journal.pone.0114500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mud crab Scylla paramamosain is an economically important marine species in China. However, frequent outbreaks of infectious diseases caused by marine bacteria, such as Vibrio parahaemolyticus, result in great economic losses. METHODOLOGY/PRINCIPAL FINDINGS Comparative de novo transcriptome analysis of S. paramamosain infected with V. parahaemolyticus was carried out to investigate the molecular mechanisms underlying the immune response to pathogenic bacteria by using the Illumina paired-end sequencing platform. A total of 52,934,042 clean reads from the hemocytes of V. parahaemolyticus-infected mud crabs and controls were obtained and assembled into 186,193 contigs. 59,120 unigenes were identified from 81,709 consensus sequences of mud crabs and 48,934 unigenes were matched proteins in the Nr or Swissprot databases. Among these, 10,566 unigenes belong to 3 categories of Gene Ontology, 25,349 to 30 categories of KEGG, and 15,191 to 25 categories of COG database, covering almost all functional categories. By using the Solexa/Illumina's DGE platform, 1213 differentially expressed genes (P<0.05), including 538 significantly up-regulated and 675 down-regulated, were detected in V. parahaemolyticus-infected crabs as compared to that in the controls. Transcript levels of randomly-chosen genes were further measured by quantitative real-time PCR to confirm the expression profiles. Many differentially expressed genes are involved in various immune processes, including stimulation of the Toll pathway, Immune Deficiency (IMD) pathway, Ras-regulated endocytosis, and proPO-activating system. CONCLUSIONS/SIGNIFICANCE Analysis of the expression profile of crabs under infection provides invaluable new data for biological research in S. paramamosain, such as the identification of novel genes in the hemocytes during V. parahaemolyticus infection. These results will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection and will be helpful for diseases prevention in crab aquaculture.
Collapse
|
17
|
Wu HJ, Sun LB, Li CB, Li ZZ, Zhang Z, Wen XB, Hu Z, Zhang YL, Li SK. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2014; 41:156-162. [PMID: 25193866 DOI: 10.1016/j.fsi.2014.08.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
In a previous study, bacterial communities of the intestine in three populations of crabs (wild crabs, pond-raised healthy crabs and diseased crabs) were probed by culture-independent methods. In this study, we examined the intestinal communities of the crabs by bacterial cultivation with a variety of media. A total of 135 bacterial strains were isolated from three populations of mud crabs. The strains were screened for antagonistic activity against Vibrio parahaemolyticus using an agar spot assay. Antagonistic strains were then identified by 16S rRNA gene sequence analysis. Three strains (Bacillus subtilis DCU, Bacillus pumilus BP, Bacillus cereus HL7) with the strongest antagonistic activity were further evaluated for their probiotic characteristics. The results showed that two (BP and DCU) of them were able to survive low pH and high bile concentrations, showed good adherence characteristics and a broad spectrum of antibiotic resistance. The probiotic effects were then tested by feeding juvenile mud crabs (Scylla paramamosain) with foods supplemented with 10(5) CFU/g of BP or DCU for 30 days before being subjected to an immersion challenge with V. parahaemolyticus for 48 h. The treated crabs showed significantly higher expression levels of immune related genes (CAT, proPO and SOD) and activities of respiratory burst than that in controlled groups. Crabs treated with BP and DCU supplemented diets exhibited survival rates of 76.67% and 78.33%, respectively, whereas survival rate was 54.88% in crabs not treated with the probiotics. The data showed that indigenous mud-associated microbiota, such as DCU and BP, have potential application in controlling pathogenic Vibriosis in mud crab aquaculture.
Collapse
Affiliation(s)
- Hui-Juan Wu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Ling-Bin Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Chuan-Biao Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Zhong-Zhen Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Zhao Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Xiao-Bo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Yue-Ling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China
| | - Sheng-Kang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Shantou 515063, China.
| |
Collapse
|