1
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
2
|
Tamura K, Chiu YW, Shiohara A, Hori Y, Tomita T. EphA4 regulates Aβ production via BACE1 expression in neurons. FASEB J 2020; 34:16383-16396. [PMID: 33090569 DOI: 10.1096/fj.202001510r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023]
Abstract
Several lines of evidence suggest that the aggregation and deposition of amyloid-β peptide (Aβ) initiate the pathology of Alzheimer's disease (AD). Recently, a genome-wide association study demonstrated that a single-nucleotide polymorphism proximal to the EPHA4 gene, which encodes a receptor tyrosine kinase, is associated with AD risk. However, the molecular mechanism of EphA4 in the pathogenesis of AD, particularly in Aβ production, remains unknown. Here, we performed several pharmacological and biological experiments both in vitro and in vivo and demonstrated that EphA4 is responsible for the regulation of Aβ production. Pharmacological inhibition of EphA4 signaling and knockdown of Epha4 led to increased Aβ levels accompanied by increased expression of β-site APP cleaving enzyme 1 (BACE1), which is an enzyme responsible for Aβ production. Moreover, EPHA4 overexpression and activation of EphA4 signaling via ephrin ligands decreased Aβ levels. In particular, the sterile-alpha motif domain of EphA4 was necessary for the regulation of Aβ production. Finally, EPHA4 mRNA levels were significantly reduced in the brains of AD patients, and negatively correlated with BACE1 mRNA levels. Our results indicate a novel mechanism of Aβ regulation by EphA4, which is involved in AD pathogenesis.
Collapse
Affiliation(s)
- Kensuke Tamura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Azusa Shiohara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Stachowski TR, Snell ME, Snell EH. Structural insights into conformational switching in latency-associated peptide between transforming growth factor β-1 bound and unbound states. IUCRJ 2020; 7:238-252. [PMID: 32148852 PMCID: PMC7055372 DOI: 10.1107/s205225251901707x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Transforming growth factor β-1 (TGFβ-1) is a secreted signalling protein that directs many cellular processes and is an attractive target for the treatment of several diseases. The primary endogenous activity regulatory mechanism for TGFβ-1 is sequestration by its pro-peptide, latency-associated peptide (LAP), which sterically prohibits receptor binding by caging TGFβ-1. As such, recombinant LAP is promising as a protein-based therapeutic for modulating TGFβ-1 activity; however, the mechanism of binding is incompletely understood. Comparison of the crystal structure of unbound LAP (solved here to 3.5 Å resolution) with that of the bound complex shows that LAP is in a more open and extended conformation when unbound to TGFβ-1. Analysis suggests a mechanism of binding TGFβ-1 through a large-scale conformational change that includes contraction of the inter-monomer interface and caging by the 'straight-jacket' domain that may occur in partnership through a loop-to-helix transition in the core jelly-roll fold. This conformational change does not appear to include a repositioning of the integrin-binding motif as previously proposed. X-ray scattering-based modelling supports this mechanism and reveals possible orientations and ensembles in solution. Although native LAP is heavily glycosylated, solution scattering experiments show that the overall folding and flexibility of unbound LAP are not influenced by glycan modification. The combination of crystallography, solution scattering and biochemical experiments reported here provide insight into the mechanism of LAP sequestration of TGFβ-1 that is of fundamental importance for therapeutic development.
Collapse
Affiliation(s)
- Timothy R. Stachowski
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Cell Stress Biology, Roswell Park Comprehensive Cancer Center, 665 Elm Street, Buffalo, NY 14203, USA
| | - Mary E. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Materials Design and Innovation, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:52-66. [PMID: 30217495 PMCID: PMC7111307 DOI: 10.1016/j.pbiomolbio.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 01/19/2023]
Abstract
Coronavirus 3C-like and Flavivirus NS2B-NS3 proteases utilize the chymotrypsin fold to harbor their catalytic machineries but also contain additional domains/co-factors. Over the past decade, we aimed to decipher how the extra domains/co-factors mediate the catalytic machineries of SARS 3C-like, Dengue and Zika NS2B-NS3 proteases by characterizing their folding, structures, dynamics and inhibition with NMR, X-ray crystallography and MD simulations, and the results revealed: 1) the chymotrypsin fold of the SARS 3C-like protease can independently fold, while, by contrast, those of Dengue and Zika proteases lack the intrinsic capacity to fold without co-factors. 2) Mutations on the extra domain of SARS 3C-like protease can transform the active catalytic machinery into the inactive collapsed state by structurally-driven allostery. 3) Amazingly, even without detectable structural changes, mutations on the extra domain are sufficient to either inactivate or enhance the catalytic machinery of SARS 3C-like protease by dynamically-driven allostery. 4) Global networks of correlated motions have been identified: for SARS 3C-like protease, N214A inactivates the catalytic machinery by decoupling the network, while STI/A and STIF/A enhance by altering the patterns of the network. The global networks of Dengue and Zika proteases are coordinated by their NS2B-cofactors. 5) Natural products were identified to allosterically inhibit Zika and Dengue proteases through binding a pocket on the back of the active site. Therefore, by introducing extra domains/cofactors, nature develops diverse strategies to regulate the catalytic machinery embedded on the chymotrypsin fold through folding, structurally- and dynamically-driven allostery, all of which might be exploited to develop antiviral drugs.
Collapse
|
5
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
6
|
Gupta G, Song J. C-Terminal Auto-Regulatory Motif of Hepatitis C Virus NS5B Interacts with Human VAPB-MSP to Form a Dynamic Replication Complex. PLoS One 2016; 11:e0147278. [PMID: 26784321 PMCID: PMC4718513 DOI: 10.1371/journal.pone.0147278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a pathogen of global importance and nearly 200 million people are chronically infected with HCV. HCV is an enveloped single-stranded RNA virus, which is characteristic of the formation of the host membrane associated replication complex. Previous functional studies have already established that the human ER-anchored VAPB protein acts as a host factor to form a complex with HCV NS5A and NS5B, which may be established as a drug target. However, there is lacking of biophysical characterization of the structures and interfaces of the complex, partly due to the dynamic nature of the complex formation and dissociation, which is extensively involved in intrinsically-disordered domains. Here by an integrated use of domain dissection and NMR spectroscopy, for the first time we have successfully deciphered that the HCV NS5B utilizes its auto-regulatory C-linker to bind the VAPB-MSP domain to form a dynamic complex. This finding implies that the NS5B C-linker is capable of playing dual roles by a switch between the folded and disordered states. Interestingly, our previous and present studies together reveal that both HCV NS5A and NS5B bind to the MSP domains of the dimeric VAP with significantly overlapped interfaces and similar affinities. The identification that EphA2 and EphA5 bind to the MSP domain with higher affinity than EphA4 provides a biophysical basis for further exploring whether other than inducing ALS-like syndrome, the HCV infection might also trigger pathogenesis associated with signalling pathways mediated by EphA2 and EphA5.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
7
|
Pastor N, Amero C. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. FRONTIERS IN PLANT SCIENCE 2015; 6:306. [PMID: 25999971 PMCID: PMC4419604 DOI: 10.3389/fpls.2015.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.
Collapse
Affiliation(s)
- Nina Pastor
- Laboratorio de Dinámica de Proteínas y Ácidos Nucleicos, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
8
|
Qin H, Lim LZ, Song J. Dynamic principle for designing antagonistic/agonistic molecules for EphA4 receptor, the only known ALS modifier. ACS Chem Biol 2015; 10:372-8. [PMID: 25334011 DOI: 10.1021/cb500413n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Additional to involvement in diverse physiological and pathological processes such as axon regeneration, synaptic plasticity, and cancers, EphA4 receptor has been recently identified as the only amyotrophic lateral sclerosis (ALS) modifier. Previously, we found that two small molecules bind the same EphA4 channel at almost equivalent affinities but mysteriously trigger opposite signaling outputs: one activated but another inhibited. Here, we determined the solution structure of the 181-residue EphA4 LBD, which represents the first for 16 Eph receptors. Further NMR dynamic studies deciphered that the agonistic and antagonistic effects of two small molecules are dynamically driven, which are achieved by oppositely modulating EphA4 dynamics. Consequently, in design of drugs to target EphA4, the dynamic requirement also needs to be satisfied in addition to the classic criteria. For example, to increase the survival of ALS patients by inhibiting EphA4, the drugs must enhance, or at least not suppress, the EphA4 dynamics.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| | - Liang-Zhong Lim
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| | - Jianxing Song
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
9
|
Riedl SJ, Pasquale EB. Targeting the Eph System with Peptides and Peptide Conjugates. Curr Drug Targets 2015; 16:1031-47. [PMID: 26212263 PMCID: PMC4861043 DOI: 10.2174/1389450116666150727115934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/02/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023]
Abstract
Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.
Collapse
Affiliation(s)
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Dai D, Huang Q, Nussinov R, Ma B. Promiscuous and specific recognition among ephrins and Eph receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1729-40. [PMID: 25017878 PMCID: PMC4157952 DOI: 10.1016/j.bbapap.2014.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Collapse
Affiliation(s)
- Dandan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013; 2:221. [PMID: 25254094 PMCID: PMC4168755 DOI: 10.12688/f1000research.2-221.v2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/12/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
12
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013. [PMID: 25254094 DOI: 10.12688/f1000research.2-221.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|