1
|
Wu KY, Dave A, Daigle P, Tran SD. Advanced Biomaterials for Lacrimal Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5425. [PMID: 39597252 PMCID: PMC11595815 DOI: 10.3390/ma17225425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
The lacrimal gland (LG) is vital for ocular health, producing tears that lubricate and protect the eye. Dysfunction of the LG leads to aqueous-deficient dry eye disease (DED), significantly impacting quality of life. Current treatments mainly address symptoms rather than the underlying LG dysfunction, highlighting the need for regenerative therapies. Tissue engineering offers a promising solution, with biomaterials playing crucial roles in scaffolding and supporting cell growth for LG regeneration. This review focuses on recent advances in biomaterials used for tissue engineering of the lacrimal gland. We discuss both natural and synthetic biomaterials that mimic the extracellular matrix and provide structural support for cell proliferation and differentiation. Natural biomaterials, such as Matrigel, decellularized extracellular matrices, chitosan, silk fibroin hydrogels, and human amniotic membrane are evaluated for their biocompatibility and ability to support lacrimal gland cells. Synthetic biomaterials, like polyethersulfone, polyesters, and biodegradable polymers (PLLA and PLGA), are assessed for their mechanical properties and potential to create scaffolds that replicate the complex architecture of the LG. We also explore the integration of growth factors and stem cells with these biomaterials to enhance tissue regeneration. Challenges such as achieving proper vascularization, innervation, and long-term functionality of engineered tissues are discussed. Advances in 3D bioprinting and scaffold fabrication techniques are highlighted as promising avenues to overcome current limitations.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Archan Dave
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patrick Daigle
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Shi MD, Sung KC, Huang JM, Chen CH, Wang YJ. Development of an Ex Vivo Porcine Eye Model for Exploring the Pathogenicity of Acanthamoeba. Microorganisms 2024; 12:1161. [PMID: 38930543 PMCID: PMC11206127 DOI: 10.3390/microorganisms12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Acanthamoeba, a widely distributed free-living amoeba found in various environments, is an opportunistic pathogen responsible for causing Acanthamoeba keratitis, a condition that may lead to blindness. However, identifying the pathogenicity of Acanthamoeba is challenging due to its complex life cycle, ability to adapt to different environments, variable virulence factors, and intricate interactions with the host immune system. Additionally, the development of an effective model for studying Acanthamoeba pathogenicity is limited, hindering a comprehensive understanding of the mechanisms underlying its virulence and host interactions. The aim of this study was to develop an ex vivo model for Acanthamoeba infection using porcine eyeballs and to evaluate the pathogenicity of the Acanthamoeba isolates. Based on slit lamp and biopsy analysis, the developed ex vivo model is capable of successfully infecting Acanthamoeba within 3 days. Histopathological staining revealed that clinical isolates of Acanthamoeba exhibited greater corneal stroma destruction and invasion in this model than environmental isolates. Our results highlight the importance of an ex vivo porcine eye model in elucidating the pathogenesis of Acanthamoeba infection and its potential implications for understanding and managing Acanthamoeba-related ocular diseases.
Collapse
Affiliation(s)
- Ming-Der Shi
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan 717, Taiwan; (M.-D.S.); (K.-C.S.)
| | - Ko-Chiang Sung
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan 717, Taiwan; (M.-D.S.); (K.-C.S.)
| | - Jian-Ming Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300, Taiwan;
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yu-Jen Wang
- Department of Parasitology, School of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
3
|
Liu Y, Butovich IA, Garreis F, Zahn I, Scholz M, Gaffling S, Jabari S, Dietrich J, Paulsen F. Comparative Characterization of Human Meibomian Glands, Free Sebaceous Glands, and Hair-Associated Sebaceous Glands Based on Biomarkers, Analysis of Secretion Composition, and Gland Morphology. Int J Mol Sci 2024; 25:3109. [PMID: 38542083 PMCID: PMC10970278 DOI: 10.3390/ijms25063109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 01/25/2025] Open
Abstract
Meibomian gland dysfunction (MGD) is one of the main causes of dry eye disease. To better understand the physiological functions of human meibomian glands (MGs), the present study compared MGs with free sebaceous glands (SGs) and hair-associated SGs of humans using morphological, immunohistochemical, and liquid chromatography-mass spectrometry (LCMS)-based lipidomic approaches. Eyelids with MGs, nostrils, lips, and external auditory canals with free SGs, and scalp with hair-associated SGs of body donors were probed with antibodies against cytokeratins (CK) 1, 8, 10, and 14, stem cell markers keratin 15 and N-cadherin, cell-cell contact markers desmoglein 1 (Dsg1), desmocollin 3 (Dsc3), desmoplakin (Dp), plakoglobin (Pg), and E-cadherin, and the tight junction protein claudin 5. In addition, Oil Red O staining (ORO) was performed in cryosections. Secretions of MGs as well as of SGs of nostrils, external auditory canals, and scalps were collected from healthy volunteers, analyzed by LCMS, and the data were processed using various multivariate statistical analysis approaches. Serial sections of MGs, free SGs, and hair-associated SGs were 3D reconstructed and compared. CK1 was expressed differently in hair-associated SGs than in MGs and other free SGs. The expression levels of CK8, CK10, and CK14 in MGs were different from those in hair-associated SGs and other free SGs. KRT15 was expressed differently in hair-associated SGs, whereas N-cadherin was expressed equally in all types of glands. The cell-cell contact markers Dsg1, Dp, Dsc3, Pg, and E-cadherin revealed no differences. ORO staining showed that lipids in MGs were more highly dispersed and had larger lipid droplets than lipids in other free SGs. Hair-associated SGs had a smaller number of lipid droplets. LCMS revealed that the lipid composition of meibum was distinctively different from that of the sebum of the nostrils, external auditory canals, and scalp. The 3D reconstructions of the different glands revealed different morphologies of the SGs compared with MGs which are by far the largest type of glands. In humans, MGs differ in their morphology and secretory composition and show major differences from free and hair-associated SGs. The composition of meibum differs significantly from that of sebum from free SGs and from hair-associated SGs. Therefore, the MG can be considered as a highly specialized type of holocrine gland that exhibits all the histological characteristics of SGs, but is significantly different from them in terms of morphology and lipid composition.
Collapse
Affiliation(s)
- Yuqiuhe Liu
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| | - Igor A. Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| | - Michael Scholz
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| | | | - Samir Jabari
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (Y.L.); (M.S.)
| |
Collapse
|
4
|
Tomar MPS, Bansal N. Enzyme histochemical characterization of orbital glands in fetuses of Indian buffalo ( Bubalus bubalis). PeerJ 2023; 11:e15196. [PMID: 37065703 PMCID: PMC10100827 DOI: 10.7717/peerj.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Background The orbital glands, viz. lacrimal gland, superficial and deep gland of third eyelid (LG, SGT and HG), are important for normal eye functions. These glands have different functions in various animals. The information about the enzyme histochemical nature of prenatal orbital glands in Indian buffalo seems to be unavailable. Therefore, the study was planned on orbital glands of six full term recently died fetuses from animals with dystocia. Methods The frozen sections of all these glands were subjected to standard localization protocols for Alkaline Phosphatase (AKPase), Glucose 6 phosphatase (G-6-Pase), Lactate dehydrogenase (LDH), Succinate dehydrogenase (SDH), Glucose 6 phosphate dehydrogenase (G-6-PD), Nicotinamide Adenine Dinucleotide Hydrogen Diaphorase (NADHD), Nicotinamide Adenine Dinucleotide Phosphate Hydrogen diaphorase (NADPHD), Dihydroxy phenylalanine oxidase (DOPA-O), Tyrosinase, non-specific esterase (NSE) and Carbonic anhydrase (CAse). Results The results revealed a mixed spectrum of reaction for the above enzymes in LG, SGT and HG which ranged from moderate (for LDH in SGT) to intense (for most of the enzymes in all three glands). However, DOPA-O, Tyrosinase and CAse did not show any reaction. From the present study, it can be postulated that the orbital glands of fetus have a high activity of metabolism as it has many developmental and functional activities which were mediated with the higher activity of the enzymes involved.
Collapse
Affiliation(s)
| | - Neelam Bansal
- Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Gómez-Prado J, Pereira AMF, Wang D, Villanueva-García D, Domínguez-Oliva A, Mora-Medina P, Hernández-Avalos I, Martínez-Burnes J, Casas-Alvarado A, Olmos-Hernández A, Ramírez-Necoechea R, Verduzco-Mendoza A, Hernández A, Torres F, Mota-Rojas D. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front Vet Sci 2022; 9:1023294. [PMID: 36532356 PMCID: PMC9751486 DOI: 10.3389/fvets.2022.1023294] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Specific anatomical characteristics make the porcine species especially sensitive to extreme temperature changes, predisposing them to pathologies and even death due to thermal stress. Interest in improving animal welfare and porcine productivity has led to the development of various lines of research that seek to understand the effect of certain environmental conditions on productivity and the impact of implementing strategies designed to mitigate adverse effects. The non-invasive infrared thermography technique is one of the tools most widely used to carry out these studies, based on detecting changes in microcirculation. However, evaluations using this tool require reliable thermal windows; this can be challenging because several factors can affect the sensitivity and specificity of the regions selected. This review discusses the thermal windows used with domestic pigs and the association of thermal changes in these regions with the thermoregulatory capacity of piglets and hogs.
Collapse
Affiliation(s)
- Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Évora, Portugal
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ramiro Ramírez-Necoechea
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Fabiola Torres
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
6
|
Singh VK, Sharma P, Vaksh UKS, Chandra R. Current approaches for the regeneration and reconstruction of ocular surface in dry eye. Front Med (Lausanne) 2022; 9:885780. [PMID: 36213677 PMCID: PMC9544815 DOI: 10.3389/fmed.2022.885780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Significant research revealed the preocular tear film composition and regulations that remain vital for maintaining Ocular surface functional integrity. Inflammation triggered by many factors is the hallmark of Ocular surface disorders or dry eyes syndrome (DES). The tear deficiencies may lead to ocular surface desiccation, corneal ulceration and/or perforation, higher rates of infectious disease, and the risk of severe visual impairment and blindness. Clinical management remains largely supportive, palliative, and frequent, lifelong use of different lubricating agents. However, few advancements such as punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts are of limited use. Cell-based therapies, tissue engineering, and regenerative medicine, have recently evolved as long-term cures for many diseases, including ophthalmic diseases. The present article focuses on the different regenerative medicine and reconstruction/bioengineered lacrimal gland formation strategies reported so far, along with their limiting factors and feasibility as an effective cure in future.
Collapse
Affiliation(s)
- Vimal Kishor Singh
- Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vimal Kishor Singh ; ;
| | - Pallavi Sharma
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
| | - Uttkarsh Kumar Sharma Vaksh
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Gurgaon, Haryana, India
| | - Ramesh Chandra
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Rodboon T, Souza GR, Mutirangura A, Ferreira JN. Magnetic bioassembly platforms for establishing craniofacial exocrine gland organoids as aging in vitro models. PLoS One 2022; 17:e0272644. [PMID: 35930565 PMCID: PMC9355193 DOI: 10.1371/journal.pone.0272644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
A multitude of aging-related factors and systemic conditions can cause lacrimal gland (LG) or salivary gland (SG) hypofunction leading to degenerative dry eye disease (DED) or dry mouth syndrome, respectively. Currently, there are no effective regenerative therapies that can fully reverse such gland hypofunction due to the lack of reproducible in vitro aging models or organoids required to develop novel treatments for multi-omic profiling. Previously, our research group successful developed three-dimensional (3D) bioassembly nanotechnologies towards the generation of functional exocrine gland organoids via magnetic 3D bioprinting platforms (M3DB). To meet the needs of our aging Asian societies, a next step was taken to design consistent M3DB protocols to engineer LG and SG organoid models with aging molecular and pathological features. Herein, a feasible step-by-step protocol was provided for producing both LG and SG organoids using M3DB platforms. Such protocol provided reproducible outcomes with final organoid products resembling LG or SG native parenchymal epithelial tissues. Both acinar and ductal epithelial compartments were prominent (21 ± 4.32% versus 42 ± 6.72%, respectively), and could be clearly identified in these organoids. Meanwhile, these can be further developed into aging signature models by inducing cellular senescence via chemical mutagenesis. The generation of senescence-like organoids will be our ultimate milestone aiming towards high throughput applications for drug screening and discovery, and for gene therapy investigations to reverse aging.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, United States of America
- Nano3D Biosciences Inc., Houston, TX, United States of America
- Greiner Bio-One North America Inc., Monroe, NC, United States of America
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
9
|
Rodboon T, Yodmuang S, Chaisuparat R, Ferreira JN. Development of high-throughput lacrimal gland organoid platforms for drug discovery in dry eye disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:151-158. [PMID: 35058190 DOI: 10.1016/j.slasd.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysfunction and damage of the lacrimal gland (LG) results in ocular discomfort and dry eye disease (DED). Current therapies for DED do not fully replenish the necessary lubrication to rescue optimal vision. New drug discovery for DED has been limited perhaps because in vitro models cannot mimic the biology of the native LG. The existing platforms for LG organoid culture are scarce and still not ready for consistency and scale up production towards drug screening. The magnetic three-dimensional (3D) bioprinting (M3DB) is a novel system for 3D in vitro biofabrication of cellularized tissues using magnetic nanoparticles to bring cells together. M3DB provides a scalable platform for consistent handling of spheroid-like cell cultures facilitating consistent biofabrication of organoids. Previously, we successfully generated innervated secretory epithelial organoids from human dental pulp stem cells with M3DB and found that this platform is feasible for epithelial organoid bioprinting. Research targeting LG organogenesis, drug discovery for DED has extensively used mouse models. However, certain inter-species differences between mouse and human must be considered. Porcine LG appear to have more similarities to human LG than the mouse counterparts. We have conducted preliminary studies with the M3DB for fabricating LG organoids from primary cells isolated from murine and porcine LG, and found that this platform provides robust LG organoids for future potential high-throughput analysis and drug discovery. The LG organoid holds promise to be a functional model of tearing, a platform for drug screening, and may offer clinical applications for DED.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
10
|
New insights into the lacrimal pump. Ocul Surf 2020; 18:689-698. [PMID: 32730907 DOI: 10.1016/j.jtos.2020.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE To date, there are many theories about tear transport through the canaliculi of the draining lacrimal system into the lacrimal sac but only few with supportive data. It is certain that the function of the lacrimal part of orbicularis oculi muscle (Horner-Duverney's muscle) is indispensable for the transport of "used" tears. However, the muscle's exact structure and the mechanisms of its functions are as yet unclear. To obtain deeper insights we undertook the present study. METHODS Upper and lower canaliculi (including the entrance into the lacrimal sac) from donor cadavers were dissected. Some of the specimens were prepared for scanning electron microscopy (SEM) to analyze the course of muscle fibers surrounding the canaliculi. Others were sectioned for enzyme- (EHC) and immunohistochemistry (IHC) to learn about the distribution of slow and fast reacting muscle fibers in Horner-Duverney's muscle as well as to analyze the distribution of different neurotransmitters to learn more about the innervation of Horner-Duverney's muscle. Four tear duct systems taken from body donors were cut out en bloc after formalin fixation, serially sectioned and reconstructed using a newly developed technology for 3D reconstruction of histological serial sections named HiD® (Chimaera GmbH, Germany). Patients that had undergone dacryocystorhinostomy (DCR) were video-analyzed endonasally during active blinking, focusing on viewing the temporal wall of the lacrimal sac movement where the canaliculi penetrated the lacrimal sac. RESULTS SEM revealed that muscle fibers of Horner-Duverney's muscle surround the vertical parts of the upper and lower canaliculus in a scissor like pattern whereas they ran in parallel to the first two thirds of the horizontal parts surrounding the respective canaliculus. Here, the muscle fibers were embedded in dense connective tissue forming a unique network. At the nasal third, muscle fibers left the canaliculi and ran to the posterior part of the fascia of the lacrimal sac and the lacrimal bone. EHC revealed that Horner-Duverney's muscle contained nearly an equal distribution of type I and type IIb muscle fibers compared to the superior rectus muscle which contains more type I and the masseter and iliopsoas muscles with more type IIb muscle fibers. IHC indicated presence of trigeminal, catecholaminergic and cholinergic nerve endings. 3D reconstructions supported the SEM data. Endonasal video analysis of patients after DCR with a nasally open lacrimal sac revealed bulging of the temporal wall of the lacrimal sac during blinking. On the basis of these findings, a modified lacrimal pump theory is proposed. CONCLUSION The results support the hypothesis that contraction of Horner-Duverney's muscle leads to closure of the canaliculi in their first two thirds based on the special arrangement of muscle fibers and connective tissue fibers. This causes the tear fluid in the canaliculi to be pressed/transported towards the lacrimal sac. The medial third of the vertical portions of the canaliculi, the canaliculus communis and the intrasaccal portion of the canaliculus are compressed by the shortening and thickening of the Horner-Duverney muscle from dorsal, which leads to a compression of the canaliculi lumens in this part of the system, thereby pushing the lacrimal fluid further towards the lacrimal sac. The mix of fast contracting and fatigue resistant muscle fibers is ideally suited for the blink mechanism that is complexly regulated by the nervous system.
Collapse
|
11
|
Crespo-Moral M, García-Posadas L, López-García A, Diebold Y. Histological and immunohistochemical characterization of the porcine ocular surface. PLoS One 2020; 15:e0227732. [PMID: 31929592 PMCID: PMC6957219 DOI: 10.1371/journal.pone.0227732] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
The ocular surface of the white domestic pig (Sus scrofa domestica) is used as a helpful model of the human ocular surface; however, a complete histological description has yet to be published. In this work, we studied porcine eyeballs with intact eyelids to describe and characterize the different structures that form the ocular surface, including the cornea and conjunctiva that covers the bulbar sclera, tarsi, and the nictitating membrane. We determined the distribution of goblet cells of different types over the conjunctiva and analyzed the conjunctival-associated lymphoid tissue (CALT). Porcine eyeballs were obtained from a local slaughterhouse, fixed, processed, and embedded in paraffin blocks. Tissue sections (4 μm) were stained with hematoxylin/eosin, Alcian blue/Periodic Acid Schiff, and Giemsa. Slides were also stained with lectins from Arachis hypogaea (PNA) and Helix pomatia (HPA) agglutinins and immunostained with rabbit anti-CD3. We found that the porcine cornea was composed of 6–8 epithelial cell layers, stroma, Descemet’s membrane, and an endothelial monolayer. The total corneal thickness was 1131.0±87.5 μm (mean±standard error of the mean) in the center and increased to 1496.9±138.2 μm at the limbus. The goblet cell density was 71.25±12.29 cells/mm, ranging from the highest density (113.04±37.21 cells/mm) in the lower palpebral conjunctiva to the lowest density (12.69±4.29 cells/mm) in the bulbar conjunctiva. The CALT was distributed in the form of intraepithelial lymphocytes and subepithelial diffuse lymphoid tissue. Lenticular-shaped lymphoid follicles, about 8 per histological section, were also present within the conjunctival areas. In conclusion, we demonstrated that the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Mario Crespo-Moral
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain
| | | | - Antonio López-García
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| | - Yolanda Diebold
- Ocular Surface Group, IOBA - University of Valladolid, Valladolid, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
12
|
Klećkowska-Nawrot JE, Goździewska-Harłajczuk K, Darska M, Barszcz K, Janeczek M. Microstructure of the eye tunics, eyelids and ocular glands of the Sulawesi bear cuscus (Ailurops ursinusTemminck, 1824) (Phalangeridae: Marsupialia) based on anatomical, histological and histochemical studies. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Joanna E. Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Marta Darska
- Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Barszcz
- Department of Morphological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Sciences; Warsaw Poland
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| |
Collapse
|
13
|
Menduni F, Davies LN, Madrid-Costa D, Fratini A, Wolffsohn JS. Characterisation of the porcine eyeball as an in-vitro model for dry eye. Cont Lens Anterior Eye 2017; 41:13-17. [PMID: 28986008 DOI: 10.1016/j.clae.2017.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To characterise the anatomical parameters of the porcine eye for potentially using it as a laboratory model of dry eye. METHODS Anterior chamber depth and angle, corneal curvature, shortest and longest diameter, endothelial cell density, and pachymetry were measured in sixty freshly enucleated porcine eyeballs. RESULTS Corneal steepest meridian was 7.85±0.32mm, corneal flattest meridian was 8.28±0.32mm, shortest corneal diameter was 12.69±0.58mm, longest corneal diameter was 14.88±0.66mm and central corneal ultrasonic pachymetry was 1009±1μm. Anterior chamber angle was 28.83±4.16°, anterior chamber depth was 1.77±0.27mm, and central corneal thickness measured using OCT was 1248±144μm. Corneal endothelial cell density was 3250±172 cells/mm2. CONCLUSIONS Combining different clinical techniques produced a pool of reproducible data on the porcine eye anatomy, which can be used by researchers to assess the viability of using the porcine eye as an in-vitro/ex-vivo model for dry eye. Due to the similar morphology with the human eye, porcine eyeballs may represent a useful and cost effective model to individually study important key factors in the development of dry eye, such as environmental and mechanical stresses.
Collapse
Affiliation(s)
- Francesco Menduni
- School of Life and Health Science, Aston University, Birmingham, UK; Optics and Optometry Department, Complutense University of Madrid, Madrid, Spain.
| | - Leon N Davies
- School of Life and Health Science, Aston University, Birmingham, UK
| | - D Madrid-Costa
- Optics and Optometry Department, Complutense University of Madrid, Madrid, Spain
| | - Antonio Fratini
- School of Life and Health Science, Aston University, Birmingham, UK
| | | |
Collapse
|
14
|
Garg A, Zhang X. Lacrimal gland development: From signaling interactions to regenerative medicine. Dev Dyn 2017; 246:970-980. [PMID: 28710815 DOI: 10.1002/dvdy.24551] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease. Developmental Dynamics 246:970-980, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
15
|
Massie I, Dietrich J, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 2: Reconstruction of Lacrimal Gland Tissue: What Has Been Achieved So Far and What Are the Remaining Challenges? Curr Eye Res 2016; 41:1255-1265. [DOI: 10.3109/02713683.2016.1151531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Dietrich J, Massie I, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 1: Regeneration of Lacrimal Gland Tissue: Can We Stimulate Lacrimal Gland Renewal In Vivo? Curr Eye Res 2016; 41:1131-42. [DOI: 10.3109/02713683.2016.1148741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Review: The Lacrimal Gland and Its Role in Dry Eye. J Ophthalmol 2016; 2016:7542929. [PMID: 27042343 PMCID: PMC4793137 DOI: 10.1155/2016/7542929] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 01/15/2023] Open
Abstract
The human tear film is a 3-layered coating of the surface of the eye and a loss, or reduction, in any layer of this film may result in a syndrome of blurry vision and burning pain of the eyes known as dry eye. The lacrimal gland and accessory glands provide multiple components to the tear film, most notably the aqueous. Dysfunction of these glands results in the loss of aqueous and other products required in ocular surface maintenance and health resulting in dry eye and the potential for significant surface pathology. In this paper, we have reviewed products of the lacrimal gland, diseases known to affect the gland, and historical and emerging dry eye therapies targeting lacrimal gland dysfunction.
Collapse
|
18
|
Spaniol K, Metzger M, Roth M, Greve B, Mertsch S, Geerling G, Schrader S. Engineering of a Secretory Active Three-Dimensional Lacrimal Gland Construct on the Basis of Decellularized Lacrimal Gland Tissue. Tissue Eng Part A 2015. [PMID: 26222647 DOI: 10.1089/ten.tea.2014.0694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lacrimal gland (LG) insufficiency is a main cause for severe dry eye leading to pain, visual impairment, and eventually loss of sight. Engineering of transplantable LG tissue with secretory capacity is a desirable goal. In this study, a three-dimensional decellularized LG (DC-LG) scaffold with preserved LG morphology was generated by treatment with 1% sodium deoxycholate and DNase solution using porcine LG tissue. To address clinical applicability, the primary in vitro culture of secretory active LG cells from a small tissue biopsy of 1.5 mm diameter was introduced and compared with an established isolation method by enzymatic digestion. Cells from both isolation methods depicted an epithelial phenotype, maintained their secretory capacity for up to 30 days, and exhibited progenitor cell capacity as measured by aldehyde dehydrogenase-1 activity, side population assay, and colony-forming units. Cells from passage 0 were reseeded into the DC-LG and secretory active cells migrated into the tissue. The cells resembled an LG-like morphology and the constructs showed secretory activity. These results demonstrate the possibility of engineering a secretory competent, three-dimensional LG construct using LG cells expanded from a small tissue biopsy and DC-LG as a matrix that provides the native structure and physiological niche for these cells.
Collapse
Affiliation(s)
- Kristina Spaniol
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Marco Metzger
- 2 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg and Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoscelettal Diseases ," Würzburg, Germany
| | - Mathias Roth
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Burkhard Greve
- 3 Department of Radiotherapy, University of Münster , Münster, Germany
| | - Sonja Mertsch
- 4 Institute for Experimental Ophthalmology, University of Münster , Münster, Germany
| | - Gerd Geerling
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Stefan Schrader
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
19
|
Barros RC, Van Kooten TG, Veeregowda DH. Investigation of Friction-induced Damage to the Pig Cornea. Ocul Surf 2015; 13:315-20. [PMID: 26164094 DOI: 10.1016/j.jtos.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve both squeeze film and boundary lubrication. Using confocal microscopy, we determined that glycerine solution reduced damage to epithelial cells by 50% compared with the phosphate buffer saline.
Collapse
Affiliation(s)
- Raquel C Barros
- University Medical Center Groningen and University of Groningen, Department of Biomedical Engineering, W.J. Kolff Institute, Groningen, The Netherlands
| | - Theo G Van Kooten
- University Medical Center Groningen and University of Groningen, Department of Biomedical Engineering, W.J. Kolff Institute, Groningen, The Netherlands
| | - Deepak Halenahally Veeregowda
- University Medical Center Groningen and University of Groningen, Department of Biomedical Engineering, W.J. Kolff Institute, Groningen, The Netherlands; Ducom Instruments Europe B.V, Center for Innovation, Groningen, The Netherlands.
| |
Collapse
|
20
|
Klećkowska-Nawrot J, Goździewska-Harłajczuk K, Nowaczyk R, Krasucki K. Functional anatomy of the lacrimal gland in African black ostrich Struthio camelus domesticus in the embryonic and postnatal period. Onderstepoort J Vet Res 2015; 82:e1-e12. [PMID: 26017903 PMCID: PMC6238799 DOI: 10.4102/ojvr.v82i1.872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 11/21/2014] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was morphological and histochemical analysis of the lacrimalgland (LG) in African black ostrich Struthio camelus domesticus in the embryonic and postnatalperiod. Studies were conducted on 50 ostriches aged between the 28th day of incubation until7 months old. Tissue sections were stained with haematoxylin and eosin, Azan trichrome,periodic acid-Schiff, Alcian blue pH 2.5, aldehyde fuchsin and Hale's dialysed iron. The LGin ostrich was classified as a tubulo-acinar type. The primordia of the lobes were determinedin the LG structure on the 28th day of incubation, whilst the weakly visible lobes with aciniand tubules were observed on the 40th day of incubation. Morphometric studies of the LGshowed steady growth, characterised by an increase in both length and width. Histometricmeasurements of lobe size showed little difference between the first, second and third agegroups, whilst in the fourth age group a marked increase in size of lobes was observed.The study showed that, apart from morphological changes, during the growth of the LGthe character of acid mucopolysaccharides changed. Sulphated acid mucopolysaccharideswere indicated, particularly with aldehyde fuchsin (AF) staining in the fourth age group.The Hale's dialysed iron (HDI) staining showed a low concentration of carboxylated acidmucopolysaccharides in the first and second age groups and a higher concentration in thethird and fourth age groups. Periodic acid-Schiff staining (PAS)-positive cells were observedin each age group, but only a small number of cells with a weakly PAS-positive reaction weredemonstrated in the first age group.
Collapse
Affiliation(s)
- Joanna Klećkowska-Nawrot
- Department of Animal Physiology and Biostructure, University of Environmental and Life Sciences.
| | | | | | | |
Collapse
|
21
|
Seo Y, Ji YW, Lee SM, Shim J, Noh H, Yeo A, Park C, Park MS, Chang EJ, Lee HK. Activation of HIF-1α (hypoxia inducible factor-1α) prevents dry eye-induced acinar cell death in the lacrimal gland. Cell Death Dis 2014; 5:e1309. [PMID: 24967971 PMCID: PMC4611733 DOI: 10.1038/cddis.2014.260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
The pathogenesis of immune-mediated lacrimal gland (LG) dysfunction in Sjögren's syndrome has been thoroughly studied. However, the majority of dry eye (DE) is not related to Sjögren type, and its pathophysiology remains unclear. The purpose of this study was to determine and investigate the protective mechanisms against DE stress in mice. DE induced prominent blood vessel loss without apoptosis or necrosis in the LG. Autophagic vacuoles, distressed mitochondria, and stressed endoplasmic reticulum were observed via electron microscopy. Immunoblotting confirmed the increase in autophagic markers. Glycolytic activities were enhanced with increasing levels of succinate and malate that, in turn, activated hypoxia-inducible factor (HIF)-1α. Interestingly, the areas of stable HIF-1α expression overlapped with COX-2 and MMP-9 upregulation in LGs of DE-induced mice. We generated HIF-1α conditional knockout (CKO) mice in which HIF-1α expression was lost in the LG. Surprisingly, normal LG polarities and morphologies were completely lost with DE induction, and tremendous acinar cell apoptosis was observed. Similar to Sjögren's syndrome, CD3+ and CD11b+ cells infiltrated HIF-1α CKO LGs. Our results show that DE induced the expression of HIF-1α that activated autophagy signals to prevent further acinar cell damage and to maintain normal LG function.
Collapse
Affiliation(s)
- Y Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Y W Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - S M Lee
- 1] Schephens Eye Research Institute, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, Korea
| | - J Shim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - H Noh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - A Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - C Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - M S Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - E J Chang
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - H K Lee
- 1] Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea [2] Institute of Corneal Dystrophy Research, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|