1
|
Yang R, Wu S, Wang S, Rubino G, Nickels JD, Cheng X. Refinement of SARS-CoV-2 envelope protein structure in a native-like environment by molecular dynamics simulations. Front Mol Biosci 2022; 9:1027223. [PMID: 36299297 PMCID: PMC9589232 DOI: 10.3389/fmolb.2022.1027223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
COVID-19 has become an unprecedented threat to human health. The SARS-CoV-2 envelope (E) protein plays a critical role in the viral maturation process and pathogenesis. Despite intensive investigation, its structure in physiological conditions remains mysterious: no high-resolution full-length structure is available and only an NMR structure of the transmembrane (TM) region has been determined. Here, we present a refined E protein structure, using molecular dynamics (MD) simulations to investigate its structure and dynamics in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer system. Our initial homology model based upon the SARS-CoV E protein structure is shown to be unstable in the lipid bilayer, and the H3 helices tend to move away from the membrane center to the membrane-water interface. A more stable model was developed by replacing all H3 helices with the fully equilibrated H3 structure sampled in the MD simulations. This refined model exhibited more favorable contacts with lipids and water than the original homology model and induced local membrane curvature, decreasing local lipid order. Interestingly, the pore radius profiles showed that the channel in both homology and refined models remained in a closed state throughout the simulations. We also demonstrated the utility of this structure to develop anti-SARS-CoV-2 drugs by docking a library of FDA-approved, investigational, and experimental drugs to the refined E protein structure, identifying 20 potential channel blockers. This highlights the power of MD simulations to refine low-resolution structures of membrane proteins in a native-like membrane environment, shedding light on the structural features of the E protein and providing a platform for the development of novel antiviral treatments.
Collapse
Affiliation(s)
- Rui Yang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| | - Shen Wang
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Grace Rubino
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, The University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Translational Data Analytics Institute (TDAI), The Ohio State University, Columbus, OH, United States
- *Correspondence: Sijin Wu, ; Jonathan D. Nickels, ; Xiaolin Cheng,
| |
Collapse
|
2
|
Bhattacharjya S. The structural basis of β2 integrin intra-cellular multi-protein complexes. Biophys Rev 2022; 14:1183-1195. [PMID: 36345283 PMCID: PMC9636337 DOI: 10.1007/s12551-022-00995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell adhesion is a pivotal physiological process which is essential for cell-cell communications, cell migration, and interactions with extracellular matrix. Integrins, a family of large hetero-dimeric type I membrane proteins, are known for driving cell adhesion functions. Among 24 different integrins, four β2 integrins, αL β2, αM β2, αX β2 and αD β2, are specific for cell adhesion and migration of leukocytes. Many cytosolic proteins interact with short cytosolic tails (CTs) of β2 and other integrins which are essential in bi-directional signaling processes. Further, phosphorylation of CTs of integrins regulates binding of intra-cellular proteins and signaling systems. In this review, recent advances in structures and interactions of multi-protein complexes of integrin tails, with a focus on β2 integrin, and cytosolic proteins are discussed along with a proposed future direction.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
3
|
Tseng HY, Samarelli AV, Kammerer P, Scholze S, Ziegler T, Immler R, Zent R, Sperandio M, Sanders CR, Fässler R, Böttcher RT. LCP1 preferentially binds clasped αMβ2 integrin and attenuates leukocyte adhesion under flow. J Cell Sci 2018; 131:jcs.218214. [PMID: 30333137 DOI: 10.1242/jcs.218214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Integrins are α/β heterodimers that interconvert between inactive and active states. In the active state the α/β cytoplasmic domains recruit integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the inactive state the α/β TMcyto domains bind integrin-inactivating proteins, resulting in the association of the TMcyto domains (clasped TMcyto). Here, we report the isolation of integrin cytoplasmic tail interactors using either lipid bicelle-incorporated integrin TMcyto domains (α5, αM, αIIb, β1, β2 and β3 integrin TMcyto) or a clasped, lipid bicelle-incorporated αMβ2 TMcyto. Among the proteins found to preferentially bind clasped rather than the isolated αM and β2 subunits was L-plastin (LCP1, also known as plastin-2), which binds to and maintains the inactive state of αMβ2 integrin in vivo and thereby regulates leukocyte adhesion to integrin ligands under flow. Our findings offer a global view on cytoplasmic proteins interacting with different integrins and provide evidence for the existence of conformation-specific integrin interactors.
Collapse
Affiliation(s)
- Hui-Yuan Tseng
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anna V Samarelli
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Patricia Kammerer
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Sarah Scholze
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Tilman Ziegler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Roland Immler
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, 37232 Tennessee, USA.,Department of Medicine, Veterans Affairs Medical Center, Nashville, 37232 Tennessee, USA
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Charles R Sanders
- Department of Biochemistry, Center for Structural Biology, and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, 37232 Tennessee, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
4
|
Intramembrane ionic protein-lipid interaction regulates integrin structure and function. PLoS Biol 2018; 16:e2006525. [PMID: 30427828 PMCID: PMC6261646 DOI: 10.1371/journal.pbio.2006525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/28/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transmembrane domains (TMDs) are generally hydrophobic, but our bioinformatics analysis shows that many TMDs contain basic residues at terminal regions. Physiological functions of these membrane-snorkeling basic residues are largely unclear. Here, we show that a membrane-snorkeling Lys residue in integrin αLβ2 (also known as lymphocyte function-associated antigen 1 [LFA-1]) regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells. The amino group of the conserved Lys ionically interacts with the phosphate group of acidic phospholipids to stabilize αLβ2 transmembrane association, thus keeping the integrin at low-affinity conformation. Intracellular Ca2+ uses its charge to directly disrupt this ionic interaction, leading to the transmembrane separation and the subsequent extracellular domain extension to increase adhesion activity. This Ca2+-mediated regulation is independent on the canonical Ca2+ signaling or integrin inside-out signaling. Our work therefore showcases the importance of intramembrane ionic protein–lipid interaction and provides a new mechanism of integrin activation. Integrin αLβ2 is the major integrin in T cells and plays a vital role in regulating T-cell activation, adhesion, and migration. The transmembrane association of αL and β2 is crucial for maintaining the integrin at low-affinity conformation. Here, we find that the conserved basic residue (K702) in the transmembrane domain of β2 contributes to transmembrane association through ternary ionic interaction with acidic phospholipid and αL cytoplasmic residue. Upon T-cell activation, influxed calcium ions (Ca2+) can directly disrupt the ionic K702–lipid interaction through its positive charges, which leads to transmembrane separation and subsequent extracellular domain extension to switch αLβ2 to high-affinity conformation. This Ca2+-mediated regulation is through the modulation of the ionic Lys–lipid interaction but not through the canonical Ca2+ signaling or integrin inside-out signaling. Our study thus reports a new regulatory mechanism of integrin activation and showcases the importance of intramembrane ionic protein–lipid interaction. This finding might have general relevance, as bioinformatics analysis shows the presence of membrane-snorkeling basic residue is a common feature of transmembrane proteins.
Collapse
|
5
|
Thinn AMM, Wang Z, Zhu J. The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 2018; 8:5067. [PMID: 29568062 PMCID: PMC5864728 DOI: 10.1038/s41598-018-23444-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Functioning as signal receivers and transmitters, the integrin α/β cytoplasmic tails (CT) are pivotal in integrin activation and signaling. 18 α integrin subunits share a conserved membrane-proximal region but have a highly diverse membrane-distal (MD) region at their CTs. Recent studies demonstrated that the presence of α CTMD region is essential for talin-induced integrin inside-out activation. However, it remains unknown whether the non-conserved α CTMD regions differently regulate the inside-out activation of integrin. Using αIIbβ3, αLβ2, and α5β1 as model integrins and by replacing their α CTMD regions with those of α subunits that pair with β3, β2, and β1 subunits, we analyzed the function of CTMD regions of 17 α subunits in talin-mediated integrin activation. We found that the α CTMD regions play two roles on integrin, which are activation-supportive and activation-regulatory. The regulatory but not the supportive function depends on the sequence identity of α CTMD region. A membrane-proximal tyrosine residue present in the CTMD regions of a subset of α integrins was identified to negatively regulate integrin inside-out activation. Our study provides a useful resource for investigating the function of α integrin CTMD regions.
Collapse
Affiliation(s)
- Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1309-1317. [PMID: 29474890 PMCID: PMC7094280 DOI: 10.1016/j.bbamem.2018.02.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/27/2023]
Abstract
Coronaviruses (CoV) cause common colds in humans, but are also responsible for the recent Severe Acute, and Middle East, respiratory syndromes (SARS and MERS, respectively). A promising approach for prevention are live attenuated vaccines (LAVs), some of which target the envelope (E) protein, which is a small membrane protein that forms ion channels. Unfortunately, detailed structural information is still limited for SARS-CoV E, and non-existent for other CoV E proteins. Herein, we report a structural model of a SARS-CoV E construct in LMPG micelles with, for the first time, unequivocal intermolecular NOEs. The model corresponding to the detergent-embedded region is consistent with previously obtained orientational restraints obtained in lipid bilayers and in vivo escape mutants. The C-terminal domain is mostly α-helical, and extramembrane intermolecular NOEs suggest interactions that may affect the TM channel conformation.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
7
|
Situ AJ, Kang SM, Frey BB, An W, Kim C, Ulmer TS. Membrane Anchoring of α-Helical Proteins: Role of Tryptophan. J Phys Chem B 2018; 122:1185-1194. [PMID: 29323921 PMCID: PMC11025564 DOI: 10.1021/acs.jpcb.7b11227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The function of membrane proteins relies on a defined orientation of protein relative to lipid. In apparent correlation to protein anchoring, tryptophan residues are enriched in the lipid headgroup region. To characterize the thermodynamic and structural basis of this relationship in α-helical membrane proteins, we examined the role of three conserved tryptophans in the folding of the heterodimeric integrin αIIbβ3 transmembrane (TM) complex in phospholipid bicelles and mammalian membranes. In the homogenous lipid environment of bicelles, tryptophan was replaceable by residues of distinct polarities. The appropriate polarity was guided by the electrostatic potential of the tryptophan surrounding, suggesting that tryptophan can complement diverse environments by adjusting the orientation of its anisotropic side chain to achieve site-specific anchoring. As a sole membrane anchor, tryptophan made a contribution of 0.4 kcal/mol to TM complex stability in bicelles. In membranes, it proved more difficult to replace tryptophan even by tyrosine, indicating a superior capacity to interact with heterogeneous lipids of biological membranes. Interestingly, at intracellular TM helix ends, where integrin activation is initiated, sequence motifs that interact with lipids via opposing polarity patterns were found to restrict TM helix orientations beyond tryptophan anchoring. In contrast to bicelles, phenylalanine became the least accepted substitute in membranes, demonstrating an increased role of the hydrophobic effect. Altogether, our study implicates a wide amphiphilic range of tryptophan, membrane complexity, and the hydrophobic effect to be important factors in tryptophan membrane anchoring.
Collapse
Affiliation(s)
- Alan J Situ
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - So-Min Kang
- Department of Life Sciences, Korea University , 145 Anam-Ro, Seongbuk-Gu, Seoul 136-701, South Korea
| | - Benjamin B Frey
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| | - Woojin An
- Department of Biochemistry & Molecular Medicine and Norris Comprehensive Cancer Center, University of Southern California , Los Angeles, California 90033, United States
| | - Chungho Kim
- Department of Life Sciences, Korea University , 145 Anam-Ro, Seongbuk-Gu, Seoul 136-701, South Korea
| | - Tobias S Ulmer
- Department of Biochemistry & Molecular Medicine and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , 1501 San Pablo Street, Los Angeles, California 90033, United States
| |
Collapse
|
8
|
Sun HY, Wu FG, Li ZH, Deng G, Zhou Y, Yu ZW. Phase behavior of a binary lipid system containing long- and short-chain phosphatidylcholines. RSC Adv 2017. [DOI: 10.1039/c6ra24961b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A new phase state, named the U phase, was observed in DPPC–diC8PC mixtures at low DPPC contents.
Collapse
Affiliation(s)
- Hai-Yuan Sun
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhi-Hong Li
- Beijing Synchrotron Radiation Facility
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yu Zhou
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
9
|
Schmidt T, Ye F, Situ AJ, An W, Ginsberg MH, Ulmer TS. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors. J Biol Chem 2016; 291:17536-46. [PMID: 27365391 PMCID: PMC5016151 DOI: 10.1074/jbc.m116.733683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/09/2016] [Indexed: 11/06/2022] Open
Abstract
In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors.
Collapse
Affiliation(s)
- Thomas Schmidt
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Feng Ye
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Alan J Situ
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Woojin An
- the Department of Biochemistry & Molecular Biology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033
| | - Mark H Ginsberg
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Tobias S Ulmer
- From the Department of Biochemistry & Molecular Biology and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
10
|
De Franceschi N, Ivaska J. Integrin bondage: filamin takes control. Nat Struct Mol Biol 2015; 22:355-7. [DOI: 10.1038/nsmb.3024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Integrin αIIbβ3 transmembrane domain separation mediates bi-directional signaling across the plasma membrane. PLoS One 2015; 10:e0116208. [PMID: 25617834 PMCID: PMC4305291 DOI: 10.1371/journal.pone.0116208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/06/2014] [Indexed: 11/19/2022] Open
Abstract
Integrins play an essential role in hemostasis, thrombosis, and cell migration, and they transmit bidirectional signals. Transmembrane/cytoplasmic domains are hypothesized to associate in the resting integrins; whereas, ligand binding and intracellular activating signals induce transmembrane domain separation. However, how this conformational change affects integrin outside-in signaling and whether the α subunit cytoplasmic domain is important for this signaling remain elusive. Using Chinese Hamster Ovary (CHO) cells that stably expressed different integrin αIIbβ3 constructs, we discovered that an αIIb cytoplasmic domain truncation led to integrin activation but not defective outside-in signaling. In contrast, preventing transmembrane domain separation abolished both inside-out and outside-in signaling regardless of removing the αIIb cytoplasmic tail. Truncation of the αIIb cytoplasmic tail did not obviously affect adhesion-induced outside-in signaling. Our research revealed that transmembrane domain separation is a downstream conformational change after the cytoplasmic domain dissociation in inside-out activation and indispensable for ligand-induced outside-in signaling. The result implicates that the β TM helix rearrangement after dissociation is essential for integrin transmembrane signaling. Furthermore, we discovered that the PI3K/Akt pathway is not essential for cell spreading but spreading-induced Erk1/2 activation is PI3K dependent implicating requirement of the kinase for cell survival in outside-in signaling.
Collapse
|
12
|
Guan S, Tan SM, Li Y, Torres J, Uzel G, Xiang L, Law SKA. Characterization of single amino acid substitutions in the β2 integrin subunit of patients with leukocyte adhesion deficiency (LAD)-1. Blood Cells Mol Dis 2014; 54:177-82. [PMID: 25514840 DOI: 10.1016/j.bcmd.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
Leukocyte adhesion deficiency 1 (LAD-1) is caused by defects in the β2 integrin subunit. We studied 18 missense mutations, 14 of which fail to support the surface expression of the β2 integrins. Integrins with the β2-G150D mutation fail to bind ligands, possibly due to the failure of the α1 segment of the βI domain to assume an α-helical structure. Integrins with the β2-G716A mutation are not maintained in their resting states, and the patient has the severe phenotype of LAD-1. The β2-S453N and β2-P648L mutants support the expression of integrins and adhesion functions. They should be re-classified as polymorphic variants.
Collapse
Affiliation(s)
- Siyu Guan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Gulbu Uzel
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Liming Xiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - S K Alex Law
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J Virol 2014; 88:11899-914. [PMID: 25100835 DOI: 10.1128/jvi.00839-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small hydrophobic (SH) protein is a 64-amino-acid polypeptide encoded by the human respiratory syncytial virus (hRSV). SH protein has a single α-helical transmembrane (TM) domain that forms pentameric ion channels. Herein, we report the first inhibitor of the SH protein channel, pyronin B, and we have mapped its binding site to a conserved surface of the RSV SH pentamer, at the C-terminal end of the transmembrane domain. The validity of the SH protein structural model used has been confirmed by using a bicellar membrane-mimicking environment. However, in bicelles the α-helical stretch of the TM domain extends up to His-51, and by comparison with previous models both His-22 and His-51 adopt an interhelical/lumenal orientation relative to the channel pore. Neither His residue was found to be essential for channel activity although His-51 protonation reduced channel activity at low pH, with His-22 adopting a more structural role. The latter results are in contrast with previous patch clamp data showing channel activation at low pH, which could not be reproduced in the present work. Overall, these results establish a solid ground for future drug development targeting this important viroporin. Importance: The human respiratory syncytial virus (hRSV) is responsible for 64 million reported cases of infection and 160,000 deaths each year. Lack of adequate antivirals fuels the search for new targets for treatment. The small hydrophobic (SH) protein is a 64-amino-acid polypeptide encoded by hRSV and other paramyxoviruses, and its absence leads to viral attenuation in vivo and early apoptosis in infected cells. SH protein forms pentameric ion channels that may constitute novel drug targets, but no inhibitor for this channel activity has been reported so far. A small-molecule inhibitor, pyronin B, can reduce SH channel activity, and its likely binding site on the SH protein channel has been identified. Black lipid membrane (BLM) experiments confirm that protonation of both histidine residues reduces stability and channel activity. These results contrast with previous patch clamp data that showed low-pH activation, which we have not been able to reproduce.
Collapse
|
14
|
Beaugrand M, Arnold A, Hénin J, Warschawski DE, Williamson PTF, Marcotte I. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6162-70. [PMID: 24797658 PMCID: PMC4072726 DOI: 10.1021/la5004353] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/02/2014] [Indexed: 05/27/2023]
Abstract
Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.
Collapse
Affiliation(s)
- Maïwenn Beaugrand
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| | - Alexandre
A. Arnold
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique, CNRS, Université
Paris Diderot and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie-Curie, 75005 Paris, France
| | - Dror E. Warschawski
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS, Université Paris Diderot and Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie-Curie, 75005 Paris, France
| | - Philip T. F. Williamson
- School
of Biological Sciences, Highfield Campus,
University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Isabelle Marcotte
- Department
of Chemistry, Université du Québec
à Montréal and Centre Québécois sur les
Matériaux Fonctionnels, P.O. Box 8888, Downtown Station, Montreal, Canada H3C 3P8
| |
Collapse
|
15
|
Scrima M, Di Marino S, Grimaldi M, Campana F, Vitiello G, Piotto SP, D'Errico G, D'Ursi AM. Structural features of the C8 antiviral peptide in a membrane-mimicking environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1010-8. [DOI: 10.1016/j.bbamem.2013.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/13/2023]
|
16
|
Liddington RC. Structural aspects of integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:111-26. [PMID: 25023171 DOI: 10.1007/978-94-017-9153-3_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structural studies on integrins have recently made great strides in recent years. Crystal structures of the complete extracellular fragments of three integrins in open and closed conformations, 6 α-I domains in complex with ligands, and at least 20 intracellular proteins in complex with cytosolic tails have been obtained; and several transmembrane and cytosolic complexes have been determined by NMR. High resolution EM studies complement these atomic resolution techniques by studying the integrin in different activation states. Although we still have only a few experimental examples among integrin family members, the high level of sequence homology between integrins means that reliable models can be built for the other members of the integrin family. These structures make sense of a lot of preceding biochemical, biophysical and mutagenesis studies, and generate many new testable hypotheses of integrin function. This chapter emphasizes new structural insights applicable to all integrins, with an emphasis on those integrins that contain an α-I domain. The structural data reinforce the notion of the integrin as a molecule in dynamic equilibrium at the cell surface, regulated by binding both to extracellular and intracellular ligands.
Collapse
Affiliation(s)
- Robert C Liddington
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|