1
|
Sciscio L, Bordy EM, Lockley MG, Abrahams M. Basal sauropodomorph locomotion: ichnological lessons from the Late Triassic trackways of bipeds and quadrupeds (Elliot Formation, main Karoo Basin). PeerJ 2023; 11:e15970. [PMID: 37790620 PMCID: PMC10542822 DOI: 10.7717/peerj.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/06/2023] [Indexed: 10/05/2023] Open
Abstract
Using modern ichnological and stratigraphic tools, we reinvestigate two iconic sauropodomorph-attributed tetradactyl ichnogenera, Pseudotetrasauropus and Tetrasauropus, and their stratigraphic occurrences in the middle Upper Triassic of Lesotho. These tracks have been reaffirmed and are stratigraphically well-constrained to the lower Elliot Formation (Stormberg Group, Karoo Basin) with a maximum depositional age range of <219-209 Ma (Norian). This represents the earliest record of basal sauropodomorph trackways in Gondwana, if not globally. Track and trackway morphology, the sedimentary context of the tracks, and unique features (e.g., drag traces) have enabled us to discuss the likely limb postures and gaits of the trackmakers. Pseudotetrasauropus has bipedal (P. bipedoida) and quadrupedal (P. jaquesi) trackway states, with the oldest quadrupedal Pseudotetrasauropus track and trackway parameters suggestive of a columnar, graviportal limb posture in the trackmaker. Moreover, an irregularity in the intermanus distance and manus orientation and morphology, in combination with drag traces, is indicative of a non-uniform locomotory suite or facultative quadrupedality. Contrastingly, Tetrasauropus, the youngest trackway, has distinctive medially deflected, robust pedal and manual claw traces and a wide and uniform intermanus distance relative to the interpedal. These traits suggest a quadrupedal trackmaker with clawed and fleshy feet and forelimbs held in a wide, flexed posture. Altogether, these trackways pinpoint the start of the southern African ichnological record of basal sauropodomorphs with bipedal and quadrupedal locomotory habits to, at least, c. 215 Ma in the middle Late Triassic.
Collapse
Affiliation(s)
- Lara Sciscio
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- JURASSICA Museum, Porrentruy, Jura, Switzerland
| | - Emese M. Bordy
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Martin G. Lockley
- Dinosaur Trackers Research Group, University of Colorado, Denver, Colorado, United States of America
| | - Miengah Abrahams
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Hand Pronation–Supination Movement as a Proxy for Remotely Monitoring Gait and Posture Stability in Parkinson’s Disease. SENSORS 2022; 22:s22051827. [PMID: 35270972 PMCID: PMC8915024 DOI: 10.3390/s22051827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
The Unified Parkinson’s Disease Rating Scale (UPDRS) is a subjective Parkinson’s Disease (PD) physician scoring/monitoring system. To date, there is no single upper limb wearable/non-contact system that can be used objectively to assess all UPDRS-III motor system subgroups (i.e., tremor (T), rigidity (R), bradykinesia (B), gait and posture (GP), and bulbar anomalies (BA)). We evaluated the use of a non-contact hand motion tracking system for potential extraction of GP information using forearm pronation–supination (P/S) motion parameters (speed, acceleration, and frequency). Twenty-four patients with idiopathic PD participated, and their UPDRS data were recorded bilaterally by physicians. Pearson’s correlation, regression analyses, and Monte Carlo validation was conducted for all combinations of UPDRS subgroups versus motion parameters. In the 262,125 regression models that were trained and tested, the models within 1% of the lowest error showed that the frequency of P/S contributes to approximately one third of all models; while speed and acceleration also contribute significantly to the prediction of GP from the left-hand motion of right handed patients. In short, the P/S better indicated GP when performed with the non-dominant hand. There was also a significant negative correlation (with medium to large effect size, range: 0.3–0.58) between the P/S speed and the single BA score for both forearms and combined UPDRS score for the dominant hand. This study highlights the potential use of wearable or non-contact systems for forearm P/S to remotely monitor and predict the GP information in PD.
Collapse
|
3
|
Amaike H, Sasaki M, Tsuzuki N, Kayano M, Oishi M, Yamada K, Endo H, Anezaki T, Matsumoto N, Nakashita R, Kuroe M, Taru H, Bando G, Iketani Y, Nakamura R, Sato N, Fukui D, Kitamura N. Mobility of the forearm skeleton in the Asiatic black (Ursus thibetanus), brown (U. arctos) and polar (U. maritimus) bears. J Vet Med Sci 2021; 83:1284-1289. [PMID: 34162775 PMCID: PMC8437730 DOI: 10.1292/jvms.21-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In several primates and carnivores, pronation/supination angles of the forearm skeleton were examined, and it is thought that a larger angle is useful to acquire dexterous behaviors in feeding and/or life style, including climbing. In this study, the pronation/supination angles in Asiatic black, brown and polar bears were nondestructively examined. These specimens were classified as adult or non-adult. Three or four carcasses of each group of Asiatic black and brown bears were used for CT analysis, whereas only one adult polar bear was used. The forearms were positioned within the gantry of a CT scanner in both maximally supinated and pronated states. Extracted cross-sectional CT images of two positions were superimposed by overlapping the outlines of each ulna. The centroids of the radii were detected, and then the centroid of each radius and the midpoint of a line which connects between both ends of the surface of each radius facing the ulna, were connected by lines to measure the angle of rotation as an index of pronation/supination. In adult brown and polar bears, the angles were smaller as compared with the other groups (Asiatic black and non-adult brown bears). Asiatic black and non-adult brown bears can climb trees, whereas adult brown bears and polar bears cannot. This suggests that the pronation/supination angle is related to arboreal activity in Ursidae.
Collapse
Affiliation(s)
- Hayato Amaike
- Hokkaido University School of Veterinary Medicine and Obihiro University of Agriculture and Veterinary Medicine, Cooperative Veterinary Education Program, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080- 8555, Japan
| | - Motoki Sasaki
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080- 8555, Japan
| | - Nao Tsuzuki
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080- 8555, Japan
| | - Mitsunori Kayano
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080- 8555, Japan
| | | | | | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Anezaki
- Gunma Museum of Natural History, Tomioka, Gunma 370-2345, Japan
| | | | - Rumiko Nakashita
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan
| | - Misako Kuroe
- Nagano Environmental Conservation Research Institute, Nagano, Nagano 381-0075, Japan
| | - Hajime Taru
- Kanagawa Prefectural Museum of Natural History, Odawara, Kanagawa 250-0031, Japan
| | - Gen Bando
- Asahiyama Zoo, Asahikawa, Hokkaido 078-8205, Japan
| | - Yuko Iketani
- Asahiyama Zoo, Asahikawa, Hokkaido 078-8205, Japan
| | | | | | | | - Nobuo Kitamura
- Hokkaido University School of Veterinary Medicine and Obihiro University of Agriculture and Veterinary Medicine, Cooperative Veterinary Education Program, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
4
|
Otero A, Cuff AR, Allen V, Sumner-Rooney L, Pol D, Hutchinson JR. Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth. Sci Rep 2019; 9:7614. [PMID: 31110190 PMCID: PMC6527699 DOI: 10.1038/s41598-019-44037-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Ontogenetic information is crucial to understand life histories and represents a true challenge in dinosaurs due to the scarcity of growth series available. Mussaurus patagonicus was a sauropodomorph dinosaur close to the origin of Sauropoda known from hatchling, juvenile and mature specimens, providing a sufficiently complete ontogenetic series to reconstruct general patterns of ontogeny. Here, in order to quantify how body shape and its relationship with locomotor stance (quadruped/biped) changed in ontogeny, hatchling, juvenile (~1 year old) and adult (8+ years old) individuals were studied using digital models. Our results show that Mussaurus rapidly grew from about 60 g at hatching to ~7 kg at one year old, reaching >1000 kg at adulthood. During this time, the body's centre of mass moved from a position in the mid-thorax to a more caudal position nearer to the pelvis. We infer that these changes of body shape and centre of mass reflect a shift from quadrupedalism to bipedalism occurred early in ontogeny in Mussaurus. Our study indicates that relative development of the tail and neck was more influential in determining the locomotor stance in Sauropodomorpha during ontogeny, challenging previous studies, which have emphasized the influence of hindlimb vs. forelimb lengths on sauropodomorph stance.
Collapse
Affiliation(s)
- Alejandro Otero
- División Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, (1900), La Plata, Argentina. .,CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Andrew R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom.
| | - Vivian Allen
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - Lauren Sumner-Rooney
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom.,Oxford University Museum of Natural History, Oxford, United Kingdom
| | - Diego Pol
- CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Museo Paleontológico "Egidio Feruglio", Trelew, Argentina
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
5
|
Baier DB, Garrity BM, Moritz S, Carney RM. Alligator mississippiensis sternal and shoulder girdle mobility increase stride length during high walks. ACTA ACUST UNITED AC 2018; 221:jeb.186791. [PMID: 30266782 DOI: 10.1242/jeb.186791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
Crocodilians have played a significant role in evolutionary studies of archosaurs. Given that several major shifts in forelimb function occur within Archosauria, forelimb morphologies of living crocodilians are of particular importance in assessing locomotor evolutionary scenarios. A previous X-ray investigation of walking alligators revealed substantial movement of the shoulder girdle, but as the sternal cartilages do not show up in X-ray, the source of the mobility could not be conclusively determined. Scapulocoracoid movement was interpreted to indicate independent sliding of each coracoid at the sternocoracoid joint; however, rotations of the sternum could also produce similar displacement of the scapulocoracoids. Here, we present new data employing marker-based XROMM (X-ray reconstruction of moving morphology), wherein simultaneous biplanar X-ray video and surgically implanted radio-opaque markers permit precise measurement of the vertebral axis, sternum and coracoid in walking alligators. We found that movements of the sternum and sternocoracoid joint both contribute to shoulder girdle mobility and stride length, and that the sternocoracoid contribution was less than previously estimated. On average, the joint contributions to stride length (measured with reference to a point on the distal radius, thus excluding wrist motion) are as follows: thoracic vertebral rotation 6.2±3.7%, sternal rotation 11.1±2.5%, sternocoracoid joint 10.1±5.2%, glenohumeral joint 40.1±7.8% and elbow 31.1±4.2%. To our knowledge, this is the first evidence of sternal movement relative to the vertebral column (presumably via rib joints) contributing to stride length in tetrapods.
Collapse
Affiliation(s)
- David B Baier
- Providence College, Department of Biology, Providence, RI 02918, USA
| | - Brigid M Garrity
- Boston University, School of Graduate Medical Science and School of Public Health, Boston, MA 02118, USA
| | - Sabine Moritz
- Brown University, Ecology and Evolutionary Biology, Providence, RI 02912, USA
| | - Ryan M Carney
- University of South Florida, Department of Integrative Biology, Tampa, FL 33620, USA
| |
Collapse
|
6
|
Klinkhamer AJ, Mallison H, Poropat SF, Sloan T, Wroe S. Comparative Three‐Dimensional Moment Arm Analysis of the Sauropod Forelimb: Implications for the Transition to a Wide‐Gauge Stance in Titanosaurs. Anat Rec (Hoboken) 2018; 302:794-817. [DOI: 10.1002/ar.23977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/28/2018] [Accepted: 08/15/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ada J. Klinkhamer
- Function, Evolution and Anatomy Research Laboratory School of Environmental and Rural Science, University of New England Armidale New South Wales Australia
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
| | | | - Stephen F. Poropat
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
- Department of Chemistry and Biotechnology Swinburne University of Technology Hawthorn Victoria Australia
| | - Trish Sloan
- Australian Age of Dinosaurs Museum of Natural History Winton Queensland Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research Laboratory School of Environmental and Rural Science, University of New England Armidale New South Wales Australia
| |
Collapse
|
7
|
Otero A. Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia). PLoS One 2018; 13:e0198988. [PMID: 29975691 PMCID: PMC6033415 DOI: 10.1371/journal.pone.0198988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
This contribution presents the forelimb muscular arrangement of sauropodomorph dinosaurs as inferred by comparisons with living archosaurs (crocodiles and birds) following the Extant Phylogenetic Bracket approach. Forty-one muscles were reconstructed, including lower limb and manus musculature, which prior information available was scarce for sauropodomorphs. A strong emphasis was placed on osteological correlates (such as tubercles, ridges and striae) and comparisons with primitive archosauromorphs are included in order to track these correlates throughout the clade. This should help to elucidate how widespread among other archosaurian groups are these osteological correlates identified in Sauropodomorpha. The ultimate goal of this contribution was to provide an exhaustive guide to muscular identification in fossil archosaurs and to offer solid anatomical bases for future studies based on osteology, myology, functional morphology and systematics.
Collapse
Affiliation(s)
- Alejandro Otero
- CONICET - División Paleontología de Vertebrados, Museo de La Plata, La Plata, Argentina
- * E-mail: ,
| |
Collapse
|
8
|
Otero A, Allen V, Pol D, Hutchinson JR. Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha). PeerJ 2017; 5:e3976. [PMID: 29188140 PMCID: PMC5703147 DOI: 10.7717/peerj.3976] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture.
Collapse
Affiliation(s)
- Alejandro Otero
- División Paleontología de Vertebrados, Museo de la Plata, La Plata, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vivian Allen
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, London, UK
| | - Diego Pol
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Museo Egidio Feruglio, Trelew, Chubut, Argentina
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, Royal Veterinary College, London, UK
| |
Collapse
|
9
|
Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives. PLoS One 2016; 11:e0149377. [PMID: 26933950 PMCID: PMC4775064 DOI: 10.1371/journal.pone.0149377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 01/31/2016] [Indexed: 11/18/2022] Open
Abstract
The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals.
Collapse
|
10
|
Tsai HP, Holliday CM. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications. J Morphol 2014; 276:601-30. [DOI: 10.1002/jmor.20360] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Henry P. Tsai
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri 65212
| | - Casey M. Holliday
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri 65212
| |
Collapse
|