1
|
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. MOLECULAR PLANT 2023; 16:432-451. [PMID: 36587241 DOI: 10.1016/j.molp.2022.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Tong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Ren J, Jiang Z, Li W, Kang X, Bai S, Yang L, Li S, Zhang D. Characterization of Glutenin Genes in Bread Wheat by Third-Generation RNA Sequencing and the Development of a Glu-1Dx5 Marker Specific for the Extra Cysteine Residue. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7211-7219. [PMID: 35666675 DOI: 10.1021/acs.jafc.2c02050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) in a mature grain play important roles in the formation of a glutenin macropolymer and gluten quality. To characterize the expressed glutenin genes of the bread wheat variety Xinmai 26 during seed development, a total of 18 full-length transcripts were obtained by the newly emerged third-generation RNA sequencing of the PacBio Sequel II platform, including 5 transcripts of HMW-GS genes and 13 transcripts of LMW-GS genes (8 intact genes and 5 pseudogenes). Combined with the patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), allelic types of the obtained glutenin genes were, respectively, determined, wherein molecular characterization deduced by transcript1528 (1Dx5) and transcript907 (Glu-A3c) indicated their great influence on dough quality. In addition, a specific functional marker dCAPS5 was developed for the single-nucleotide substitution at position 353 of the 1Dx5 subunit, which was further intensively compared with the other proposed markers to efficiently utilize the 1Dx5 subunit with the extra cysteine residue. This study provides an efficient method to accurately identify and utilize glutenin genes in bread wheat, which is helpful in understanding the contributions of glutenin genes to wheat quality.
Collapse
Affiliation(s)
- Jiajia Ren
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Zhikai Jiang
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Wenjie Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Xusen Kang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Lijuan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Agriculture, Henan University, Kaifeng 475001, China
| |
Collapse
|
3
|
Delorean E, Gao L, Lopez JFC, Wulff BBH, Ibba MI, Poland J. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Commun Biol 2021; 4:1242. [PMID: 34725451 PMCID: PMC8560932 DOI: 10.1038/s42003-021-02563-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Central to the diversity of wheat products was the origin of hexaploid bread wheat, which added the D-genome of Aegilops tauschii to tetraploid wheat giving rise to superior dough properties in leavened breads. The polyploidization, however, imposed a genetic bottleneck, with only limited diversity introduced in the wheat D-subgenome. To understand genetic variants for quality, we sequenced 273 accessions spanning the known diversity of Ae. tauschii. We discovered 45 haplotypes in Glu-D1, a major determinant of quality, relative to the two predominant haplotypes in wheat. The wheat allele 2 + 12 was found in Ae. tauschii Lineage 2, the donor of the wheat D-subgenome. Conversely, the superior quality wheat allele 5 + 10 allele originated in Lineage 3, a recently characterized lineage of Ae. tauschii, showing a unique origin of this important allele. These two wheat alleles were also quite similar relative to the total observed molecular diversity in Ae. tauschii at Glu-D1. Ae. tauschii is thus a reservoir for unique Glu-D1 alleles and provides the genomic resource to begin utilizing new alleles for end-use quality improvement in wheat breeding programs.
Collapse
Affiliation(s)
- Emily Delorean
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Liangliang Gao
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Brande B H Wulff
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, DF, Mexico
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
5
|
Ma F, Kim J, Cho E, Brown-Guedira G, Park CS, Baik BK. HMW-GS composition and rye translocations of U.S. eastern soft winter wheat and their associations with protein strength. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Shen L, Luo G, Song Y, Song S, Li Y, Yang W, Li X, Sun J, Liu D, Zhang A. Low molecular weight glutenin subunit gene composition at Glu-D3 loci of Aegilops tauschii and common wheat and a further view of wheat evolution. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2745-2763. [PMID: 30225644 DOI: 10.1007/s00122-018-3188-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat. Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01-AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbin Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Yanhong Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shuyi Song
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- College of Agronomy, The Collaborative Innovation Center of Grain Crops in Henan, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China.
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
7
|
Allelic variation of high molecular weight glutenin subunits of bread wheat in Hebei province of China. J Genet 2018. [DOI: 10.1007/s12041-018-0985-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Gao Z, Tian G, Wang Y, Li Y, Cao Q, Han M, Shi Z. Allelic variation of high molecular weight glutenin subunits of bread wheat in Hebei province of China. J Genet 2018; 97:905-910. [PMID: 30262702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In common wheat (Triticum aestivum L.), allelic variations of Glu-1 loci have important influences on grain end-use quality. The allelic variations in high molecular weight glutenin subunits (HMW-GSs) were identified in 151 hexaploid wheat varieties representing a historical trend in the cultivars introduced or released inHebei province ofChina fromthe years 1970s to 2010s.Thirteen distinct alleles were detected for Glu-1. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the 1 (43.0%), 7+8 (64.9%), 2+12 (74.8%) alleles, respectively, in wheat varieties. Twenty two different HMW-GS compositions were observed in wheat. Twenty-five (16.6%) genotypes possessed the combination of subunits 1, 7+8, 2+12, 25 (16.6%) genotypes had subunit composition of 2*, 7+8, 2+12; 20 (13.2%) genotypes had subunit composition of null, 7+8, 2+12. The frequency of other subunit composition was less than 10%. The Glu-1 quality score greater than or equal to 9 accounted for 20.6% of the wheat varieties. The percentage of superior subunits (1 or 2* subunit at Glu-A1 locus; 7+8, 14+15 or 17+18 at Glu-B1 locus; 5+10 or 5+12 at Glu-D1 locus) was an upward trend over the last 40 years. The more different superior alleles correlated with good bread-making quality should be introduced for their usage in wheat improvement efforts.
Collapse
Affiliation(s)
- Zhenxian Gao
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Li D, Jin H, Zhang K, Wang Z, Wang F, Zhao Y, Huo N, Liu X, Gu YQ, Wang D, Dong L. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:414-426. [PMID: 29752764 DOI: 10.1111/tpj.13956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 05/22/2023]
Abstract
Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Dong Z, Yang Y, Zhang K, Li Y, Wang J, Wang Z, Liu X, Qin H, Wang D. Development of a new set of molecular markers for examining Glu-A1 variants in common wheat and ancestral species. PLoS One 2017; 12:e0180766. [PMID: 28683152 PMCID: PMC5500356 DOI: 10.1371/journal.pone.0180766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022] Open
Abstract
In common wheat (Triticum aestivum L.), allelic variations of Glu-A1 locus have important influences on grain end-use quality. Among the three Glu-A1 alleles, Glu-A1a and -A1b encode the high-molecular-weight glutenin subunits (HMW-GSs) 1Ax1 and 1Ax2*, respectively, whereas Glu-A1c does not specify any subunit. Here, we detected a total of 11 Glu-A1 locus haplotypes (H1 to H11) in three wheat species, by developing and using a new set of DNA markers (Xrj5, Xid3, Xrj6, Xid4 and Xrj7). The main haplotypes found in the diploid wheat T. urartu were H1, H4, H5 and H6, with H1 and H4 expressing both 1Ax and 1Ay subunits. The major haplotypes revealed for tetraploid wheat (T. turgidum) were H1, H8 and H9, with the lines expressing both 1Ax and 1Ay belonging to H1, H4 or H7. Four major haplotypes (H1, H9, H10 and H11) were discovered in common wheat, with Glu-A1a associated with H1 and H8, Glu-A1b with H10 or H11, and Glu-A1c with H9. The Glu-A1 locus haplotypes and the new set of DNA markers have potential to be used for more effectively studying and utilizing the molecular variations of Glu-A1 to improve the end-use quality of common wheat are discussed.
Collapse
Affiliation(s)
- Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yushuang Yang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Junjun Wang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Wang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Wang Z, Li Y, Yang Y, Liu X, Qin H, Dong Z, Zheng S, Zhang K, Wang D. New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants. Sci Rep 2017; 7:3428. [PMID: 28611351 PMCID: PMC5469833 DOI: 10.1038/s41598-017-03393-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
Abstract
Among the three major food crops (rice, wheat and maize), wheat is unique in accumulating gluten proteins in its grains. Of these proteins, the high and low molecular weight glutenin subunits (HMW-GSs and LMW-GSs) form glutenin macropolymers that are vital for the diverse end-uses of wheat grains. In this work, we developed a new series of deletion mutants lacking one or two of the three Glu-1 loci (Glu-A1, -B1 and -D1) specifying HMW-GSs. Comparative analysis of single and double deletion mutants reinforced the suggestion that Glu-D1 (encoding the HMW-GSs 1Dx2 and 1Dy12) has the largest effects on the parameters related to gluten and dough functionalities and breadmaking quality. Consistent with this suggestion, the deletion mutants lacking Glu-D1 or its combination with Glu-A1 or Glu-B1 generally exhibited strong decreases in functional glutenin macropolymers (FGMPs) and in the incorporation of HMW-GSs and LMW-GSs into FGMPs. Further examination of two knockout mutants missing 1Dx2 or 1Dy12 showed that 1Dx2 was clearly more effective than 1Dy12 in promoting FGMPs by enabling the incorporation of more HMW-GSs and LMW-GSs into FGMPs. The new insight obtained and the mutants developed by us may aid further research on the control of wheat end-use quality by glutenin proteins.
Collapse
Affiliation(s)
- Zhaojun Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yushuang Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhai Zheng
- Zhaoxian Institute of Agricultural Sciences, Zhaoxian, 051530, China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Makai S, Tamás L, Juhász A. A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1504. [PMID: 27766102 PMCID: PMC5052276 DOI: 10.3389/fpls.2016.01504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes.
Collapse
Affiliation(s)
- Szabolcs Makai
- Department of Applied Genomics, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
| | - László Tamás
- Department of Plant Physiology and Molecular Biology, Eötvös Loránd UniversityBudapest, Hungary
| | - Angéla Juhász
- Department of Applied Genomics, Centre for Agricultural Research, Hungarian Academy of SciencesMartonvásár, Hungary
- State Agriculture Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, USA
| |
Collapse
|
13
|
Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|