1
|
Tomita M, Hirose S, Nakamura T, Funamoto K. pH-Dependent migratory behaviors of neutrophil-like cells in a microfluidic device with controllability of dissolved gas concentrations. Sci Rep 2024; 14:28730. [PMID: 39567568 PMCID: PMC11579455 DOI: 10.1038/s41598-024-79625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Inflammatory microenvironments often become acidic (pH < 7.4) due to tissue oxygen deprivation and lactate release in glycolysis by activated immune cells. Although neutrophils are known to accumulate in such microenvironments, the effects of pH on their migration are not fully understood. Here, we first investigated the pH control around cultured cells with a microfluidic device, which was equipped with two gas channels above three parallel media channels. By supplying gas mixtures with predefined carbon dioxide (CO2) concentrations to the gas channels, the gas exchange adjusted the dissolved CO2 and affected the chemical equilibrium of sodium hydrogen carbonate in the cell culture medium. A pH gradient from 8.3 to 6.8 was generated along the media channels when gas mixtures containing 1% and 50% CO2 were supplied to the left and right gas channels, respectively. Neutrophil-like differentiated human promyelocytic leukemia cells (HL-60) were then seeded to the fibronectin-coated media channels and their migratory behaviors were quantified while varying the pH. The cell migration became more active and faster under high pH than under low pH conditions. However, no directional migration along the pH gradient was detected during the three-hour observation. Thus, the microfluidic device is useful to elucidate pH-dependent cellular dynamics.
Collapse
Affiliation(s)
- Masashi Tomita
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza Aoba, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza Aoba, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Taishi Nakamura
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza Aoba, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza Aoba, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan.
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan.
- Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki-Aza Aoba, Aoba-Ku, Sendai, Miyagi, 980-8597, Japan.
| |
Collapse
|
2
|
Hamoud AR, Alganem K, Hanna S, Morran M, Henkel N, Imami AS, Ryan W, Sahay S, Pulvender P, Kunch A, Arvay TO, Meller J, Shukla R, O'Donovan SM, McCullumsmith R. Illuminating the dark kinome: utilizing multiplex peptide activity arrays to functionally annotate understudied kinases. Cell Commun Signal 2024; 22:501. [PMID: 39415254 PMCID: PMC11484317 DOI: 10.1186/s12964-024-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Protein kinases are critical components of a myriad biological processes and strongly associated with various diseases. While kinase research has been a point of focus in biomedical research for several decades, a large portion of the kinome is still considered understudied or "dark," because prior research is targeted towards a subset of kinases with well-established roles in cellular processes. We present an empirical and in-silico hybrid workflow to extend the functional knowledge of understudied kinases. Utilizing multiplex peptide activity arrays and robust in-silico analyses, we extended the functional knowledge of five dark tyrosine kinases (AATK, EPHA6, INSRR, LTK, TNK1) and explored their roles in schizophrenia, Alzheimer's dementia (AD), and major depressive disorder (MDD). Using this hybrid approach, we identified 195 novel kinase-substrate interactions with variable degrees of affinity and linked extended functional networks for these kinases to biological processes that are impaired in psychiatric and neurological disorders. Biochemical assays and mass spectrometry were used to confirm a putative substrate of EPHA6, an understudied dark tyrosine kinase. We examined the EPHA6 network and knowledgebase in schizophrenia using reporter peptides identified and validated from the multi-plex array with high affinity for phosphorylation by EPHA6. Identification and confirmation of putative substrates for understudied kinases provides a wealth of actionable information for the development of new drug treatments as well as exploration of the pathophysiology of disease states using signaling network approaches.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Sean Hanna
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Michael Morran
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Nicholas Henkel
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - William Ryan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Austin Kunch
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Taylen O Arvay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Robert McCullumsmith
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA.
- Neurosciences Institute, ProMedica, Toledo, OH, USA.
| |
Collapse
|
3
|
Caratis F, Opiełka M, Hausmann M, Velasco-Estevez M, Rojek B, de Vallière C, Seuwen K, Rogler G, Karaszewski B, Rutkowska A. The proton-sensing receptors TDAG8 and GPR4 are differentially expressed in human and mouse oligodendrocytes: Exploring their role in neuroinflammation and multiple sclerosis. PLoS One 2024; 19:e0283060. [PMID: 38527054 PMCID: PMC10962805 DOI: 10.1371/journal.pone.0283060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research.
Collapse
Affiliation(s)
- Fionä Caratis
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Bartłomiej Rojek
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
5
|
Further Evidence that Gradients of Extracellular pH Direct Migration of MDA-MB-231 Cells In Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:373-378. [PMID: 36527665 DOI: 10.1007/978-3-031-14190-4_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We hypothesised that concentration gradients of O2/H+ within tissue guide migration of primary cancer cells toward intra-tumour microvessels, thus promoting intravasation and eventual haematogenous metastasis of cancer cells. Previously, we demonstrated in vitro that MDA-MB-231 cells under pH and O2 gradients (0.2-0.3 units/mm and ~ 6%/mm, respectively) migrate toward higher pH/O2 regions. The present study was designed to address questions yet unanswered in the previous one, i.e., (1) whether extracellular O2 gradients could be a cue for directional cell migration in physiologically relevant O2 environments, and (2) whether average pH level in the bulk extracellular medium affects directional cell migration. In the absence of pH gradients, directional cell migration was not demonstrated at a physiological O2 level (<5%). We demonstrated that both the migration velocity and directionality are significantly affected by the average extracellular pH level. This result is consistent with our model for directional cell migration that does not necessitate sensing of pH gradient at a single cell level. Thus, in this study, we demonstrated further evidence that gradients of extracellular pH direct migration of MDA-MB-231 cells in vitro.
Collapse
|
6
|
Matoba K, Yamashita S, Isaksen TJ, Yamashita T. Proton-sensing receptor GPR132 facilitates migration of astrocytes. Neurosci Res 2020; 170:106-113. [PMID: 33333086 DOI: 10.1016/j.neures.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/26/2022]
Abstract
Astrocytes are one of the first responders to central nervous system (CNS) injuries such as spinal cord injury (SCI). They are thought to repress injury-induced CNS inflammation as well as inhibit axonal regeneration. While reactive astrocytes migrate and accumulate around the lesion core, the mechanism of astrocyte migration towards the lesion site remains unclear. Here, we examined possible involvement of acidification of the lesion site and expression of proton-sensing receptors in astrocyte migration, both in mice models and in vitro. We found that the expression of several proton-sensing receptors was increased at the lesion site after SCI. Among these receptors, Gpr132 was expressed in primary cultured astrocytes and exhibited significant enhanced expression in acidic conditions in vitro. Furthermore, astrocyte motility was enhanced in acidic media and by Gpr132 activation. These results suggest that acidification of the lesion site facilitates astrocyte migration via the proton-sensing receptor Gpr132.
Collapse
Affiliation(s)
- Ken Matoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
A Relatively Small Gradient of Extracellular pH Directs Migration of MDA-MB-231 Cells In Vitro. Int J Mol Sci 2020; 21:ijms21072565. [PMID: 32272744 PMCID: PMC7177698 DOI: 10.3390/ijms21072565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Hematogenous tumor metastasis begins with the invasion and spread of primary tumor cells in the local tissue leading to intravasation. We hypothesized that tumor cells might actively migrate toward intratumor vessels with the extracellular metabolic gradient acting as a guiding cue. Here, we determined in vitro whether the extracellular gradient of pH can act as a cue for directional migration in MDA-MB-231 cells. Cell migration was determined by the wound-healing assay under gradients of extracellular pH (~0.2 units/mm) and oxygen concentration (~6% O2/mm) that were produced by a microfluidic device, gap cover glass (GCG). Without GCG, the migration of cells was spatially homogeneous; the same number of cells migrated to the rectangular wound space from the left and right boundaries. In contrast, when GCG generated pH/O2 gradients across the wound space, the number of cells migrating to the wound space from the boundary with higher pH/O2 values was considerably decreased, indicating a preferential movement of cells toward the region of higher pH/O2 in the gradient. The addition of hepes in the extracellular medium abolished both the extracellular pH gradient and the directional cell migration under GCG. We conclude that relatively small gradients of pH in the extracellular medium compared to those found in Na+/H+ exchanger-driven cell migration were sufficient to guide MDA-MB-231 cells. The directional cell migration as guided by the metabolic gradient could effectively elevate the probability of intravasation and, ultimately, hematogenous metastasis.
Collapse
|
8
|
Hsieh FY, Han HW, Chen XR, Yang CS, Wei Y, Hsu SH. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials 2018; 174:31-40. [DOI: 10.1016/j.biomaterials.2018.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
|
9
|
Espinosa-Hoyos D, Jagielska A, Homan KA, Du H, Busbee T, Anderson DG, Fang NX, Lewis JA, Van Vliet KJ. Engineered 3D-printed artificial axons. Sci Rep 2018; 8:478. [PMID: 29323240 PMCID: PMC5765144 DOI: 10.1038/s41598-017-18744-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/16/2017] [Indexed: 12/02/2022] Open
Abstract
Myelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes' production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells' response to both physical cues and pharmacological agents.
Collapse
Affiliation(s)
- Daniela Espinosa-Hoyos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore
| | - Anna Jagielska
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kimberly A Homan
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Huifeng Du
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Travis Busbee
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, 02139, USA
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Krystyn J Van Vliet
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
|
11
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
12
|
Kim N, Minami N, Yamada M, Imai H. Immobilized pH in culture reveals an optimal condition for somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod Med Biol 2016; 16:58-66. [PMID: 29259452 PMCID: PMC5715877 DOI: 10.1002/rmb2.12011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
Aim One of the parameters that greatly affects homeostasis in the body is the pH. Regarding reproductive biology, germ cells, such as oocytes or sperm, are exposed to severe changes in pH, resulting in dramatic changes in their characteristics. To date, the effect of the pH has not been investigated regarding the reprogramming of somatic cells and the maintenance and differentiation of pluripotent stem cells. Methods In order to investigate the effects of the pH on cell culture, the methods to produce induced pluripotent stem cells (iPSCs) and to differentiate embryonic stem cells (ESCs) into mesendoderm and neuroectoderm were performed at each medium pH from 6.6 to 7.8. Using the cells of the Oct4‐GFP (green fluorescent protein) carrying mouse, the effects of pH changes were examined on the timing and colony formation at cell reprogramming and on the cell morphology and direction of the differentiation of the ESCs. Results The colony formation rate and timing of the reprogramming of the somatic cells varied depending on the pH of the culture medium. In addition, mesendodermal differentiation of the mouse ESCs was enhanced at the high pH level of 7.8. Conclusion These results suggest that the pH in the culture medium is one of the key factors in the induction of the reprogramming of somatic cells and in the differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Narae Kim
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
13
|
Ahmed SS, Schattgen SA, Frakes AE, Sikoglu EM, Su Q, Li J, Hampton TG, Denninger AR, Kirschner DA, Kaspar B, Matalon R, Gao G. rAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended Pathology Beyond the Central Nervous System. Mol Ther 2016; 24:1030-1041. [PMID: 27039844 PMCID: PMC4923332 DOI: 10.1038/mt.2016.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 02/07/2023] Open
Abstract
Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.
Collapse
Affiliation(s)
- Seemin Seher Ahmed
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Stefan A Schattgen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ashley E Frakes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elif M Sikoglu
- The Center for Comparative Neuroimaging, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | - Brian Kaspar
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Reuben Matalon
- Department of Pediatrics, Biochemical and Molecular Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
14
|
Zhang L, Su F, Kong X, Lee F, Day K, Gao W, Vecera ME, Sohr JM, Buizer S, Tian Y, Meldrum DR. Ratiometric fluorescent pH-sensitive polymers for high-throughput monitoring of extracellular pH. RSC Adv 2016; 6:46134-46142. [PMID: 27721974 PMCID: PMC5049506 DOI: 10.1039/c6ra06468j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular pH has a strong effect on cell metabolism and growth. Precisely detecting extracellular pH with high throughput is critical for cell metabolism research and fermentation applications. In this research, a series of ratiometric fluorescent pH sensitive polymers are developed and the ps-pH-neutral is characterized as the best one for exculsive detection of extracellular pH. Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) is used as the host polymer to increase the water solubility of the pH sensitive polymer without introducing cell toxicity. The fluorescent emission spectra from the polymeric sensor under excitation at the isosbestic point 455 nm possess two fluorescence peaks at 475 nm and 505 nm, which have different responding trends to pH. This enables the polymer to detect pH using fluorescent maxima at 475 nm and 505 nm (I475nm /I505nm ) ratiometrically. The cell impermeability ensures the sensor can solely detect the environmental pH. The sensor is tested to detect the extracellular pH of bacteria or eukaryotic cells in high throughput assays using a microplate reader. Results showed that the pH sensor can be used for high throughput detection of extracellular pH with high repeatability and low photobleaching effect.
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Xiangxing Kong
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Fred Lee
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Kevin Day
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Weimin Gao
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Mary E. Vecera
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Jeremy M. Sohr
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Sean Buizer
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
- Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055 (China)
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, 1001 S. McAlister Ave., P.O. Box 876501, Tempe, AZ 85287 (USA)
| |
Collapse
|
15
|
Yoo HY, Huang J, Li L, Foo M, Zeng H, Hwang DS. Nanomechanical Contribution of Collagen and von Willebrand Factor A in Marine Underwater Adhesion and Its Implication for Collagen Manipulation. Biomacromolecules 2016; 17:946-53. [DOI: 10.1021/acs.biomac.5b01622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jun Huang
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Lin Li
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Mathias Foo
- School
of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Hongbo Zeng
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | |
Collapse
|
16
|
van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P, Nijboer CH. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol 2015; 136:28-49. [PMID: 26655283 DOI: 10.1016/j.pneurobio.2015.11.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Preterm birth is an evolving challenge in neonatal health care. Despite declining mortality rates among extremely premature neonates, morbidity rates remain very high. Currently, perinatal diffuse white matter injury (WMI) is the most commonly observed type of brain injury in preterm infants and has become an important research area. Diffuse WMI is associated with impaired cognitive, sensory and psychological functioning and is increasingly being recognized as a risk factor for autism-spectrum disorders, ADHD, and other psychological disturbances. No treatment options are currently available for diffuse WMI and the underlying pathophysiological mechanisms are far from being completely understood. Preterm birth is associated with maternal inflammation, perinatal infections and disrupted oxygen supply which can affect the cerebral microenvironment by causing activation of microglia, astrogliosis, excitotoxicity, and oxidative stress. This intricate interplay of events negatively influences oligodendrocyte development, causing arrested oligodendrocyte maturation or oligodendrocyte cell death, which ultimately results in myelination failure in the developing white matter. This review discusses the current state in perinatal WMI research, ranging from a clinical perspective to basic molecular pathophysiology. The complex regulation of oligodendrocyte development in healthy and pathological conditions is described, with a specific focus on signaling cascades that may play a role in WMI. Furthermore, emerging concepts in the field of WMI and issues regarding currently available animal models are put forward. Novel insights into the molecular mechanisms underlying impeded oligodendrocyte maturation in diffuse WMI may aid the development of novel treatment options which are desperately needed to improve the quality-of-life of preterm neonates.
Collapse
Affiliation(s)
- Erik van Tilborg
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobbi Fleiss
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Inserm, Paris U1141, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS, Paris 1141, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Ast S, Rutledge PJ, Todd MH. The properties and performance of a pH-responsive functionalised nanoparticle. Faraday Discuss 2014; 175:171-87. [DOI: 10.1039/c4fd00110a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report fluorescence measurements of three quantum dots (QDs) of different sizes functionalised with the same pH responsive naphthalimide dye. QD size strongly influences energy transfer between dye and dot. Using QDs with an emission maximum of 570 nm gives rise to an interesting transfer of energy from dye to dot, while QDs with an emission maximum at 670 nm give unexpected enhancement of the dye emission. Titrations of QDs with the dye provide a means to establish the loading and hence an approximation of the surface dye density, which varies in proportion to QD size. Quenching effects are observed beyond the loading limit, and may indicate non-specific interactions between the excess dye and the nanoparticle. Attachment of the dye to the QD core is achieved by a thiol/disulfide exchange process that has been interrogated with Raman spectroscopy. The stability of these QD–dye conjugates over time and across a physiological pH range has been investigated to provide an assessment of their performance and robustness.
Collapse
Affiliation(s)
- Sandra Ast
- School of Chemistry
- The University of Sydney
- , Australia
| | | | | |
Collapse
|