1
|
Mahdi Khamaneh A, Jafari-Gharabaghlou D, Ansarin K, Pazooki P, Akbarpour Z, Naghili B, Zarghami N. A new insight into the impact of copy number variations on cell cycle deregulation of luminal-type breast cancer. Oncol Rev 2025; 19:1516409. [PMID: 40017494 PMCID: PMC11861078 DOI: 10.3389/or.2025.1516409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
Breast cancer is the most prevalent neoplasm in women. ER+ (Luminal subtype), representing over 70% of breast tumors, is a genetically diverse group. Structural and Numerical-Chromosomal instability initiates tumor development and is recognized as the primary driver of genetic alteration in luminal breast tumors. Genomic instability refers to the increased tendency of cancer cells to accumulate genomic alterations during cell proliferation. The cell cycle check-point response to constant and stable genomic alterations in tumor cells drives this process. The impact of CNV patterns and aneuploidies in cell cycle and proliferation perturbation has recently been highlighted by scientists in Luminal breast tumors. The impact of chromosomal instability on cancer therapy and prognosis is not a new concept. Still, the degree of emerging genomic instability leads to prognosis alteration following cell cycle deregulation by chromosomal instability could be predicted by CNVs-based reclassification of breast tumors. In this review, we try to explain the effect of CIN in the cell cycle that ended with genomic instability and altered prognosis and the impact of CIN in decision-making for a therapy strategy for patients with luminal breast cancer.
Collapse
Affiliation(s)
- Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khalil Ansarin
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Akbarpour
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Behrooz Naghili
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| |
Collapse
|
2
|
Darzi M, Shokrollahi-Barough M, Nazeri E, Majidzadeh-A K, Esmaeili R. Gene co-expression network analysis reveals relationship between leukocyte fraction and genomic instability in dedifferentiated liposarcoma. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:203-218. [PMID: 40321702 PMCID: PMC12046367 DOI: 10.22099/mbrc.2025.51329.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Dedifferentiated Liposarcoma (DDLPS) is one of the common subtypes of liposarcoma that is considered a highly malignant category. This study aims to investigate DDLPS through a system biology approach. The gene expression profiles and clinical traits of the DDLPS were acquired from The Cancer Genome Atlas (TCGA). The identification of co-expressed modules was conducted using the weighted gene co-expression network analysis. The immune cell-related gene function was studied by a web-based tool, TIMER, and, the survival analysis was performed at both the module and single-gene levels through Cox Regression analysis. Gene enrichment analysis was also conducted using the DAVID tool. One of the nine co-expressed DDLPS modules was significantly correlated with leukocyte fraction, hyper/hypo methylation, tumor purity, and chromosome instability (CIN). Based on the biological processes used to classify genes, the hub genes in a particular module play important roles in DNA repair, microtubule organizing clusters, mitotic checkpoint dysregulation, and cell proliferation signaling pathways. After screening the genes based on intra-module connectivity, module membership, and gene significance RAD54L was selected as one of the important hub genes. RAD54L showed poor prognosis to the overall survival (OS) analysis (HR=1.6, 95% CI=1.1-2.4, p=0.02). No co-expressed modules had relationship with OS. Through DDLPS traits, CIN and hyper/hypo methylation had significant negative relationship with OS. Our achievement confirmed the inverse association between tumor purity for DDLPS gene profiles and leukocyte fraction and negative leukocyte fraction (LF) gene significance in some genes was justified according to the sub-population analyses of immune cells in TIMER.
Collapse
Affiliation(s)
- Mohammad Darzi
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Medical Informatics Research Group, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdieh Shokrollahi-Barough
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Zhu J, Huang Q, Peng X, Luo C, Liu S, Liu Z, Wu X, Luo H. Identification of LncRNA Prognostic Signature Associated With Genomic Instability in Pancreatic Adenocarcinoma. Front Oncol 2022; 12:799475. [PMID: 35433487 PMCID: PMC9012103 DOI: 10.3389/fonc.2022.799475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Genomic instability (GI) is a critical feature of cancer which plays a key role in the occurrence and development of pancreatic adenocarcinoma (PAAD). Long non-coding RNA (LncRNA) is an emerging prognostic biomarker because it is involved in regulating GI. Recently, researchers used such GI-related LncRNAs (GILncRNAs) to establish a prognostic signature for patients with cancer and helped in predicting the overall prognosis of the patients. However, it is evident that patients with PAAD still lack such prognostic signature constructed with GILncRNA. Methods The present study screened GILncRNAs from 83 patients with PAAD. Prognosis-related GILncRNAs were identified by univariate Cox regression analysis. The correlation coefficients of these GILncRNAs were obtained by multivariate Cox regression analysis and used to construct a signature. The signature in the present study was then assessed through survival analysis, mutation correlation analysis, independent prognostic analysis, and clinical stratification analysis in the training set and validated in the testing as well as all TCGA set. The current study performed external clinical relevance validation of the signature and validated the effect of AC108134.2 in GILncSig on PAAD using in vitro experiments. Finally, the function of GILncRNA signature (GILncSig) dependent on Gene Ontology enrichment analysis was explored and chemotherapeutic drug sensitivity analysis was also performed. Results Results of the present study found that a total of 409 GILncRNAs were identified, 5 of which constituted the prognostic risk signature in this study, namely, AC095057.3, AC108134.2, AC124798.1, AL606834.1, and AC104695.4. It was found that the signature of the present study was better than others in predicting the overall survival and applied to patients with PAAD of all ages, genders, and tumor grades. Further, it was noted that the signature of the current study in the GSE102238, was correlated with tumor length, and tumor stage of patients with PAAD. In vitro, functional experiments were used in the present study to validate that AC108134.2 is associated with PAAD genomic instability and progression. Notably, results of the pRRophetic analysis in the current study showed that the high-risk group possessed reverse characteristics and was sensitive to chemotherapy. Conclusions In conclusion, it was evident that the GILncSig used in the present study has good prognostic performance. Therefore, the signature may become a potential sensitive biological indicator of PAAD chemotherapy, which may help in clinical decision-making and management of patients with cancer.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Qian Huang
- Department of General Practice, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
5
|
Harnan S, Tappenden P, Cooper K, Stevens J, Bessey A, Rafia R, Ward S, Wong R, Stein RC, Brown J. Tumour profiling tests to guide adjuvant chemotherapy decisions in early breast cancer: a systematic review and economic analysis. Health Technol Assess 2020; 23:1-328. [PMID: 31264581 DOI: 10.3310/hta23300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer and its treatment can have an impact on health-related quality of life and survival. Tumour profiling tests aim to identify whether or not women need chemotherapy owing to their risk of relapse. OBJECTIVES To conduct a systematic review of the effectiveness and cost-effectiveness of the tumour profiling tests oncotype DX® (Genomic Health, Inc., Redwood City, CA, USA), MammaPrint® (Agendia, Inc., Amsterdam, the Netherlands), Prosigna® (NanoString Technologies, Inc., Seattle, WA, USA), EndoPredict® (Myriad Genetics Ltd, London, UK) and immunohistochemistry 4 (IHC4). To develop a health economic model to assess the cost-effectiveness of these tests compared with clinical tools to guide the use of adjuvant chemotherapy in early-stage breast cancer from the perspective of the NHS and Personal Social Services. DESIGN A systematic review and health economic analysis were conducted. REVIEW METHODS The systematic review was partially an update of a 2013 review. Nine databases were searched in February 2017. The review included studies assessing clinical effectiveness in people with oestrogen receptor-positive, human epidermal growth factor receptor 2-negative, stage I or II cancer with zero to three positive lymph nodes. The economic analysis included a review of existing analyses and the development of a de novo model. RESULTS A total of 153 studies were identified. Only one completed randomised controlled trial (RCT) using a tumour profiling test in clinical practice was identified: Microarray In Node-negative Disease may Avoid ChemoTherapy (MINDACT) for MammaPrint. Other studies suggest that all the tests can provide information on the risk of relapse; however, results were more varied in lymph node-positive (LN+) patients than in lymph node-negative (LN0) patients. There is limited and varying evidence that oncotype DX and MammaPrint can predict benefit from chemotherapy. The net change in the percentage of patients with a chemotherapy recommendation or decision pre/post test ranged from an increase of 1% to a decrease of 23% among UK studies and a decrease of 0% to 64% across European studies. The health economic analysis suggests that the incremental cost-effectiveness ratios for the tests versus current practice are broadly favourable for the following scenarios: (1) oncotype DX, for the LN0 subgroup with a Nottingham Prognostic Index (NPI) of > 3.4 and the one to three positive lymph nodes (LN1-3) subgroup (if a predictive benefit is assumed); (2) IHC4 plus clinical factors (IHC4+C), for all patient subgroups; (3) Prosigna, for the LN0 subgroup with a NPI of > 3.4 and the LN1-3 subgroup; (4) EndoPredict Clinical, for the LN1-3 subgroup only; and (5) MammaPrint, for no subgroups. LIMITATIONS There was only one completed RCT using a tumour profiling test in clinical practice. Except for oncotype DX in the LN0 group with a NPI score of > 3.4 (clinical intermediate risk), evidence surrounding pre- and post-test chemotherapy probabilities is subject to considerable uncertainty. There is uncertainty regarding whether or not oncotype DX and MammaPrint are predictive of chemotherapy benefit. The MammaPrint analysis uses a different data source to the other four tests. The Translational substudy of the Arimidex, Tamoxifen, Alone or in Combination (TransATAC) study (used in the economic modelling) has a number of limitations. CONCLUSIONS The review suggests that all the tests can provide prognostic information on the risk of relapse; results were more varied in LN+ patients than in LN0 patients. There is limited and varying evidence that oncotype DX and MammaPrint are predictive of chemotherapy benefit. Health economic analyses indicate that some tests may have a favourable cost-effectiveness profile for certain patient subgroups; all estimates are subject to uncertainty. More evidence is needed on the prediction of chemotherapy benefit, long-term impacts and changes in UK pre-/post-chemotherapy decisions. STUDY REGISTRATION This study is registered as PROSPERO CRD42017059561. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Sue Harnan
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Paul Tappenden
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Katy Cooper
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - John Stevens
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alice Bessey
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Rachid Rafia
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sue Ward
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert C Stein
- University College London Hospitals Biomedical Research Centre, London, UK.,Research Department of Oncology, University College London, London, UK
| | - Janet Brown
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Cepeda S, Forero-Castro M, Cárdenas-Nieto D, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Instability in Farmers Exposed to Pesticides: High Prevalence of Clonal and Non-Clonal Chromosomal Alterations. Risk Manag Healthc Policy 2020; 13:97-110. [PMID: 32104116 PMCID: PMC7024798 DOI: 10.2147/rmhp.s230953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction An important economic activity in Colombia is agricultural production and farmers are frequently exposed to pesticides. Occupational exposure to pesticides is associated with an increased incidence of various diseases, including cancer, Parkinson’s disease, Alzheimer’s disease, reproductive disorders, and birth defects. However, although high genotoxicity is associated with these chemicals, information about the type and frequency of specific chromosomal alterations (CAs) and the level of chromosomal instability (CIN) induced by exposure to pesticides is scarce or absent. Methods In this study, CAs and CIN were assessed in peripheral blood lymphocytes (PBLs) from five farmers occupationally exposed to pesticides and from five unexposed individuals using GTG-banding and molecular cytogenetic analysis. Results A significant increase in clonal and non-clonal chromosomal alterations was observed in pesticide-exposed individuals compared with unexposed individuals (510±12,2 vs 73±5,7, respectively; p<0.008). Among all CAs, monosomies and deletions were more frequently observed in the exposed group. Also, a high frequency of fragilities was observed in the exposed group. Conclusion Together, these findings suggest that exposure to pesticides could be associated with CIN in PBLs and indicate the need for the establishment of educational programs on safety precautions when handling pesticides, such as wearing gloves, masks and boots, changing clothes and maintaining proper hygiene, among others. Further evaluation in other similar studies that include a greater number of individuals exposed to pesticides is necessary.
Collapse
Affiliation(s)
- Sebastian Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Diana Cárdenas-Nieto
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - María Martínez-Agüero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
7
|
Lee K, Kim HJ, Jang MH, Lee S, Ahn S, Park SY. Centromere 17 copy number gain reflects chromosomal instability in breast cancer. Sci Rep 2019; 9:17968. [PMID: 31784614 PMCID: PMC6884473 DOI: 10.1038/s41598-019-54471-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Chromosomal instability (CIN) is known to be associated with prognosis and treatment response in breast cancer. This study was conducted to determine whether copy number gain of centromere 17 (CEP17) reflects CIN, and to evaluate the prognostic and predictive value of CIN in breast cancer. CIN status was determined by summing copy number gains of four centromeric probes (CEP1, CEP8, CEP11, and CEP16) based on fluorescence in situ hybridization and CIN scores were calculated using next generation sequencing data. High CIN was associated with adverse clinicopatholgical parameters of breast cancer. Among them, positive HER2 status, high Ki-67 index and CEP17 copy number gain were found to be independent predictors of high CIN. High CIN was associated with poor clinical outcome of the patients in the whole group, as well as in luminal/HER2-negative and HER2-positive subtypes. CEP17 copy number was significantly higher in the high-CIN-score group than in the low-CIN-score group. A positive linear correlation between the mean CEP17 copy number and the CIN score was found. In conclusion, CEP17 copy number was confirmed as a useful predictor for CIN in breast cancer, and high CIN was revealed as an indicator of poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Kyoungyul Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Kangwon, Republic of Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Min Hye Jang
- Department of Pathology, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea.
| |
Collapse
|
8
|
New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response. Genes (Basel) 2017; 8:genes8060155. [PMID: 28587191 PMCID: PMC5485519 DOI: 10.3390/genes8060155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers.
Collapse
|
9
|
Gorrini C, Mak TW. Fundamental Pathways in Breast Cancer 2: Maintenance of Genomic Stability. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Villalba-Campos M, Chuaire-Noack L, Sánchez-Corredor MC, Rondón-Lagos M. High chromosomal instability in workers occupationally exposed to solvents and paint removers. Mol Cytogenet 2016; 9:46. [PMID: 27325915 PMCID: PMC4913430 DOI: 10.1186/s13039-016-0256-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Painters are exposed to an extensive variety of harmful substances like aromatic hydrocarbons used as solvents and paint removers, some of which have shown clastogenic activity. These substances constitute a complex mixture of chemicals which contain well-known genotoxicants, such as Benzene, Toluene and Xylene. Thus, chronic occupational exposure to such substances may be considered to possess genotoxic risk. In Colombia the information available around the genotoxic damage (Chromosomal and DNA damage) in car paint shop workers is limited and the knowledge of this damage could contribute not only to a better understanding of the carcinogenic effect of this kind of substances but also could be used as biomarkers of occupational exposure to genotoxic agents. RESULTS In this study, the genotoxic effect of aromatic hydrocarbons was assessed in peripheral blood lymphocytes of 24 workers occupationally exposed and 24 unexposed donors, by using Cytogenetic analysis and comet assay. A high frequency of Chromosomal alterations was found in the exposed group in comparison with those observed in the unexposed group. Among the total of CAs observed in the exposed group, fragilities were most frequently found (100 %), followed by chromosomal breaks (58 %), structural (41.2 %) and numerical chromosomal alterations (21 %). Numerical chromosomal alterations, fragilities and chromosomal breaks showed significant differences between exposed and unexposed groups. Among the fragilities, fra(9)(q12) was the most frequently observed. DNA damage index was also significantly higher in the exposed group compared to the unexposed group (p < 0.000). CONCLUSIONS Our results revealed that occupational exposure to aromatic hydrocarbons is significantly associated with Chromosomal and DNA damage in car paint shops workers and are also indicative of high chromosomal instability. The high frequency of both Chromosomal Alterations and DNA Damage Index observed in this study indicates an urgent need of intervention not only to prevent the increased risk of developing cancer but also to the application of strict health control and motivation to the use of appropriate protecting devices during work.
Collapse
Affiliation(s)
- Mónica Villalba-Campos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
| | - Lilian Chuaire-Noack
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
| | | | - Milena Rondón-Lagos
- />Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC Colombia
- />Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy
| |
Collapse
|
11
|
Liu C, Srihari S, Lal S, Gautier B, Simpson PT, Khanna KK, Ragan MA, Lê Cao KA. Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer. Mol Oncol 2016; 10:179-93. [PMID: 26456802 PMCID: PMC5528935 DOI: 10.1016/j.molonc.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
The Homologous Recombination (HR) pathway is crucial for the repair of DNA double-strand breaks (DSBs) generated during DNA replication. Defects in HR repair have been linked to the initiation and development of a wide variety of human malignancies, and exploited in chemical, radiological and targeted therapies. In this study, we performed a personalised pathway analysis independently for four large sporadic breast cancer cohorts to investigate the status of HR pathway dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and its impact on tumour characteristics. Specifically, we first manually curated a list of HR genes according to our recent review on this pathway (Liu et al., 2014), and then applied a personalised pathway analysis method named Pathifier (Drier et al., 2013) on the expression levels of the curated genes to obtain an HR score quantifying HR pathway dysregulation in individual tumours. Based on the score, we observed a great diversity in HR dysregulation between and within gene expression-based breast cancer subtypes, and by using two published HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel association between HR pathway dysregulation and chromosomal instability (CIN) in sporadic breast cancer. Although CIN has long been considered as a hallmark of most solid tumours, with recent extensive studies highlighting its importance in tumour evolution and drug resistance, the molecular basis of CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway dysregulation might contribute to CIN in sporadic breast cancer.
Collapse
Affiliation(s)
- Chao Liu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Samir Lal
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia
| | - Benoît Gautier
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia; School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Kum Kum Khanna
- QIMR-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4029, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia.
| | - Kim-Anh Lê Cao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
12
|
Manié E, Popova T, Battistella A, Tarabeux J, Caux-Moncoutier V, Golmard L, Smith NK, Mueller CR, Mariani O, Sigal-Zafrani B, Dubois T, Vincent-Salomon A, Houdayer C, Stoppa-Lyonnet D, Stern MH. Genomic hallmarks of homologous recombination deficiency in invasive breast carcinomas. Int J Cancer 2015; 138:891-900. [DOI: 10.1002/ijc.29829] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/25/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Elodie Manié
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Tatiana Popova
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Aude Battistella
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Julien Tarabeux
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | | | - Lisa Golmard
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
| | - Nicholas K. Smith
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| | - Christopher R. Mueller
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Queen's Cancer Research Institute, Queen's University, Kingston; Ontario K7L 3N6 Canada
| | - Odette Mariani
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
- Centre De Ressources Biologiques; Institut Curie; Paris F-75248 France
| | | | - Thierry Dubois
- Centre De Recherche; Institut Curie; Paris F-75248 France
- Département De Recherche Translationnelle; Institut Curie; Paris F-75248 France
| | | | - Claude Houdayer
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
| | - Dominique Stoppa-Lyonnet
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
- Département De Biologie Des Tumeurs; Institut Curie; Paris F-75248 France
- Sorbonne Paris Cité; University Paris-Descartes; Paris F-75270 France
| | - Marc-Henri Stern
- Centre De Recherche; Institut Curie; Paris F-75248 France
- INSERM U830; Paris F-75248 France
| |
Collapse
|
13
|
Shinmura K, Kato H, Kawanishi Y, Nagura K, Kamo T, Okubo Y, Inoue Y, Kurabe N, Du C, Iwaizumi M, Kurachi K, Nakamura T, Sugimura H. SASS6 overexpression is associated with mitotic chromosomal abnormalities and a poor prognosis in patients with colorectal cancer. Oncol Rep 2015; 34:727-738. [PMID: 26035073 DOI: 10.3892/or.2015.4014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Spindle assembly abnormal protein 6 homolog (SASS6) plays an important role in the regulation of centriole duplication. To date, the genetic alteration of SASS6 has not been reported in human cancers. In the present study, we examined whether SASS6 expression is abnormally regulated in colorectal cancers (CRCs). Increased SASS6 mRNA and protein expression levels were observed in 49 (60.5%) of the 81 primary CRCs and 11 (57.9%) of the 19 primary CRCs, respectively. Moreover, the upregulation of SASS6 mRNA expression was statistically significant (P=0.0410). Next, using DLD-1 colon cancer cells inducibly expressing SASS6, SASS6 overexpression was shown to induce centrosome amplification, mitotic abnormalities such as chromosomal misalignment and lagging chromosome, and chromosomal numerical changes. Furthermore, SASS6 overexpression was associated with anaphase bridge formation, a type of mitotic structural abnormality, in primary CRCs (P<0.01). SASS6 upregulation in colon cancer was also revealed in the Cancer Genome Atlas (TCGA) data and was shown to be an independent predictor of poor survival (multivariate analysis: hazard ratio, 2.805; 95% confidence interval, 1.244‑7.512; P=0.0112). Finally, further analysis of the TCGA data demonstrated SASS6 upregulation in a modest manner in 8 of 11 cancer types other than colon cancer, and SASS6 upregulation was found to be associated with a poor survival outcome in patients with kidney renal cell carcinoma and lung adenocarcinoma. Our present findings revealed that the upregulation of SASS6 expression is involved in the pathogenesis of CRC and is associated with a poor prognosis among patients with colon cancer. They also suggest that SASS6 upregulation is a genetic abnormality relatively common in human cancer.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuichi Kawanishi
- Research Equipment Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kiyoko Nagura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takaharu Kamo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yusuke Okubo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuya Kurabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Chunping Du
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moriya Iwaizumi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kiyotaka Kurachi
- Department of Surgery 2, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshio Nakamura
- Department of Surgery, Fujieda Municipal General Hospital, Fujieda, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
14
|
Suo C, Hrydziuszko O, Lee D, Pramana S, Saputra D, Joshi H, Calza S, Pawitan Y. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics 2015; 31:2607-13. [PMID: 25810432 DOI: 10.1093/bioinformatics/btv164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. RESULTS An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. AVAILABILITY AND IMPLEMENTATION The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. CONTACT yudi.pawitan@ki.se SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chen Suo
- School of Life Sciences, Peking University, Beijing, China, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Hrydziuszko
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Donghwan Lee
- Department of Statistics, Ewha Womans University, Seoul, South Korea
| | - Setia Pramana
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, Department of Computational Statistics, Institute of Statistics, Jakarta, Indonesia and
| | - Dhany Saputra
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Himanshu Joshi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Calza
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Kotoula V, Bobos M, Alexopoulou Z, Papadimitriou C, Papadopoulou K, Charalambous E, Tsolaki E, Xepapadakis G, Nicolaou I, Papaspirou I, Aravantinos G, Christodoulou C, Efstratiou I, Gogas H, Fountzilas G. Adjusting breast cancer patient prognosis with non-HER2-gene patterns on chromosome 17. PLoS One 2014; 9:e103707. [PMID: 25098819 PMCID: PMC4123879 DOI: 10.1371/journal.pone.0103707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022] Open
Abstract
Background HER2 and TOP2A gene status are assessed for diagnostic and research purposes in breast cancer with fluorescence in situ hybridization (FISH). However, FISH probes do not target only the annotated gene, while chromosome 17 (chr17) is among the most unstable chromosomes in breast cancer. Here we asked whether the status of specifically targeted genes on chr17 might help in refining prognosis of early high-risk breast cancer patients. Methods Copy numbers (CN) for 14 genes on chr17, 4 of which were within and 10 outside the core HER2 amplicon (HER2- and non-HER2-genes, respectively) were assessed with qPCR in 485 paraffin-embedded tumor tissue samples from breast cancer patients treated with adjuvant chemotherapy in the frame of two randomized phase III trials. Principal Findings HER2-genes CN strongly correlated to each other (Spearman’s rho >0.6) and were concordant with FISH HER2 status (Kappa 0.6697 for ERBB2 CN). TOP2A CN were not concordant with TOP2A FISH status (Kappa 0.1154). CN hierarchical clustering revealed distinct patterns of gains, losses and complex alterations in HER2- and non-HER2-genes associated with IHC4 breast cancer subtypes. Upon multivariate analysis, non-HER2-gene gains independently predicted for shorter disease-free survival (DFS) and overall survival (OS) in patients with triple-negative cancer, as compared to luminal and HER2-positive tumors (interaction p = 0.007 for DFS and p = 0.011 for OS). Similarly, non-HER2-gene gains were associated with worse prognosis in patients who had undergone breast-conserving surgery as compared to modified radical mastectomy (p = 0.004 for both DFS and OS). Non-HER2-gene losses were unfavorable prognosticators in patients with 1–3 metastatic nodes, as compared to those with 4 or more nodes (p = 0.017 for DFS and p = 0.001 for OS). Conclusions TOP2A FISH and qPCR may not identify the same pathology on chr17q. Non-HER2 chr17 CN patterns may further predict outcome in breast cancer patients with known favorable and unfavorable prognosis.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- * E-mail:
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Zoi Alexopoulou
- Department of Biostatistics, Health Data Specialists Ltd, Athens, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, “Alexandra” Hospital, University of Athens School of Medicine, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Elpida Charalambous
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Eleftheria Tsolaki
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | | - Irene Nicolaou
- Department of Histopathology, “Agii Anagriri” Cancer Hospital, Athens, Greece
| | | | - Gerasimos Aravantinos
- Second Department of Medical Oncology, “Agii Anargiri” Cancer Hospital, Athens, Greece
| | | | | | - Helen Gogas
- First Department of Medicine, “Laiko” General Hospital, University of Athens, Medical School, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
- Department of Medical Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|
16
|
Piscuoglio S, Ng CKY, Martelotto LG, Eberle CA, Cowell CF, Natrajan R, Bidard FC, De Mattos-Arruda L, Wilkerson PM, Mariani O, Vincent-Salomon A, Weigelt B, Reis-Filho JS. Integrative genomic and transcriptomic characterization of papillary carcinomas of the breast. Mol Oncol 2014; 8:1588-602. [PMID: 25041824 PMCID: PMC5037246 DOI: 10.1016/j.molonc.2014.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Papillary carcinoma (PC) is a rare type of breast cancer, which comprises three histologic subtypes: encapsulated PC (EPC), solid PC (SPC) and invasive PC (IPC). Microarray‐based gene expression and Affymetrix SNP 6.0 gene copy number profiling, and RNA‐sequencing revealed that PCs are luminal breast cancers that display transcriptomic profiles distinct from those of grade‐ and estrogen receptor (ER)‐matched invasive ductal carcinomas of no special type (IDC‐NSTs), and that the papillary histologic pattern is unlikely to be underpinned by a highly recurrent expressed fusion gene or a highly recurrent expressed mutation. Despite displaying similar patterns of gene copy number alterations, significant differences in the transcriptomic profiles of EPCs, SPCs and IPCs were found, and may account for their different histologic features. Papillary carcinomas of the breast display distinctive transcriptomic profiles. Proliferation‐related genes are expressed at low levels in papillary carcinomas. Papillary carcinomas are unlikely to be underpinned by a highly recurrent fusion gene. Papillary carcinomas are unlikely to be underpinned by a highly recurrent expressed mutation.
Collapse
Affiliation(s)
- Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Carey A Eberle
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Catherine F Cowell
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - François-Clement Bidard
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA; Institut Curie, Department of Biopathology and INSERM U934, Paris, France
| | - Leticia De Mattos-Arruda
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK
| | - Odette Mariani
- Institut Curie, Department of Biopathology and INSERM U934, Paris, France
| | | | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, NY, USA.
| |
Collapse
|