1
|
Badhe Y, Sharma P, Gupta R, Rai B. Elucidating collective translocation of nanoparticles across the skin lipid matrix: a molecular dynamics study. NANOSCALE ADVANCES 2023; 5:1978-1989. [PMID: 36998645 PMCID: PMC10044770 DOI: 10.1039/d2na00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The top layer of skin, the stratum corneum, provides a formidable barrier to the skin. Nanoparticles are utilized and further explored for personal and health care applications related to the skin. In the past few years, several researchers have studied the translocation and permeation of nanoparticles of various shapes, sizes, and surface chemistry through cell membranes. Most of these studies focused on a single nanoparticle and a simple bilayer system, whereas skin has a highly complex lipid membrane architecture. Moreover, it is highly unlikely that a nanoparticle formulation applied on the skin will not have multiple nanoparticle-nanoparticle and skin-nanoparticle interactions. In this study, we have utilized coarse-grained MARTINI molecular dynamics simulations to assess the interactions of two types (bare and dodecane-thiol coated) of nanoparticles with two models (single bilayer and double bilayer) of skin lipid membranes. The nanoparticles were found to be partitioned from the water layer to the lipid membrane as an individual entity as well as in the cluster form. It was discovered that each nanoparticle reached the interior of both single bilayer and double bilayer membranes irrespective of the nanoparticle type and concentration, though coated particles were observed to efficiently traverse across the bilayer when compared with bare particles. The coated nanoparticles also created a single large cluster inside the membrane, whereas the bare nanoparticles were found in small clusters. Both the nanoparticles exhibited preferential interactions with cholesterol molecules present in the lipid membrane as compared to other lipid components of the membrane. We have also observed that the single membrane model exhibited unrealistic instability at moderate to higher concentrations of nanoparticles, and hence for translocation study, a minimum double bilayer model should be employed.
Collapse
Affiliation(s)
- Yogesh Badhe
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | | | - Rakesh Gupta
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| | - Beena Rai
- Physical Science Research Area, Tata Research Development and Design Centre, TCS Research 54B, Hadapsar Industrial Estate Pune - 411013 India +91-20-66086422
| |
Collapse
|
2
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
3
|
Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules 2022; 12:biom12050639. [PMID: 35625567 PMCID: PMC9138838 DOI: 10.3390/biom12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between carbon nanoparticles (CNPs) and biological membranes is critically important for applications of CNPs in biomedicine and toxicology. Due to the complexity and diversity of the systems, most molecular simulation studies have focused on the interactions of CNPs and single component bilayers. In this work, we performed coarse-grained molecular dynamic (CGMD) simulations to investigate the behaviors of fullerenes in the presence of multiple lipid components in the plasma membranes with varying fullerene concentrations. Our results reveal that fullerenes can spontaneously penetrate the plasma membrane. Interestingly, fullerenes prefer to locate themselves in the region of the highly unsaturated lipids that are enriched in the inner leaflet of the plasma membrane. This causes fullerene aggregation even at low concentrations. When increasing fullerene concentrations, the fullerene clusters grow, and budding may emerge at the inner leaflet of the plasma membrane. Our findings suggest by tuning the lipid composition, fullerenes can be loaded deeply inside the plasma membrane, which can be useful for designing drug carrier liposomes. Moreover, the mechanisms of how fullerenes perturb multicomponent cell membranes and how they directly enter the cell are proposed. These insights can help to determine fullerene toxicity in living cells.
Collapse
|
4
|
Biswas R, Yang S, Crichton RA, Adly-Gendi P, Chen TK, Kopcha WP, Shi Z, Zhang J. C 60-β-cyclodextrin conjugates for enhanced nucleus delivery of doxorubicin. NANOSCALE 2022; 14:4456-4462. [PMID: 35262142 DOI: 10.1039/d2nr00777k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate the use of water-soluble C60-β-cyclodextrin conjugates to encapsulate and deliver doxorubicin to the cell nucleus. The behaviour of the fullerene aggregates inside cells is dictated by the functionalization of the C60 cage. While both the C60 conjugates are taken up by lysosomes upon cellular entry, only the one with a hydroxylated cage rapidly escaped the lysosome. The drug delivery system (DDS) with a hydroxylated C60 cage showed significantly enhanced doxorubicin delivery to the cell nucleus, whereas the DDS with a hydrophobic C60 cage was trapped in the lysosome for a longer time and showed significantly reduced doxorubicin delivery to the nucleus. This study opens new paths towards advanced fullerene-based DDSs for small molecule drugs.
Collapse
Affiliation(s)
- Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Shilong Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Ryan A Crichton
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Patrick Adly-Gendi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Tyler K Chen
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Fang B, Dai X, Li B, Qu Y, Li YQ, Zhao M, Yang Y, Li W. Self-assembly of ultra-small-sized carbon nanoparticles in lipid membrane disrupts its integrity. NANOSCALE ADVANCES 2021; 4:163-172. [PMID: 36132950 PMCID: PMC9417506 DOI: 10.1039/d1na00529d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/12/2021] [Indexed: 06/15/2023]
Abstract
Although nanomaterials are widely studied in biomedical applications, the major concern of nanotoxicity still exists. Therefore, numerous studies have been conducted on the interactions of various biomolecules with various types of nanomaterials, including carbon nanotubes, graphene, fullerene etc. However, the size effect of nanomaterials is poorly documented, especially ultra-small particles. Here, the interactions of the smallest carbon nanoparticle (NP), C28, with the cell membrane were studied using molecular dynamics (MD) simulations. The results show that similar to fullerene C60, the C28 NPs can self-assemble into stable clusters in water. Inside the membrane, the C28 NPs are more prone to aggregate to form clusters than C60 NPs. The reason for C28 aggregation is characterized by the potential of mean force (PMF) and can be explained by the polarized nature of C28 NPs while the acyl chains of lipids are nonpolar. At the C28 cluster regions, the thickness of the membrane is significantly reduced by the C28 aggregation. Accordingly, the membrane loses its structural integrity, and translocation of water molecules through it was observed. Thus, these results predict a stronger cytotoxicity to cells than C60 NPs. The present findings might shed light on the understanding of the cytotoxicity of NPs with different sizes and would be helpful for the potential biomedical applications of carbon NPs, especially as antibacterial agents.
Collapse
Affiliation(s)
- Bing Fang
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Xing Dai
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Baoyu Li
- Institute of Quantitative Biology and Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou 215123 China
| | - Yuanyuan Qu
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Yong-Qiang Li
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Mingwen Zhao
- School of Physics, Shandong University Jinan Shandong 250100 China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 China
| | - Weifeng Li
- School of Physics, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
6
|
Permeation pathway of two hydrophobic carbon nanoparticles across a lipid bilayer. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Erimban S, Daschakraborty S. Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study. Phys Chem Chem Phys 2020; 22:6335-6350. [DOI: 10.1039/c9cp05999g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Passive permeation of CD across lipid bilayer is almost impossible. Forced permeation results membrane rupture.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihar 801106
- India
| | | |
Collapse
|
8
|
Atilhan M, Costa LT, Aparicio S. On the interaction between carbon nanomaterials and lipid biomembranes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Abstract
Whilst the formation of plastic nanoparticles (nanoplastics) from plastic wastes has been unequivocally evidenced, little is known about the effects of these materials on living organisms at the subcellular or molecular levels. In the present contribution we show through molecular dynamics simulations that polyethylene nanoparticles dissolve in the hydrophobic core of lipid bilayers into a network of disentangled, single polymeric chains. The thereby induced structural and dynamic changes in the bilayer alter vital functions of the cell membrane, which if lacking a mechanism to decompose the polymer chains may result in the death of the cell.
Collapse
Affiliation(s)
- Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, 53115, Bonn, Germany
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, 53115, Bonn, Germany
| |
Collapse
|
10
|
Nakamura H, Nozaki Y, Koizumi Y, Watano S. Effect of number of hydroxyl groups of fullerenol C 60 (OH) n on its interaction with cell membrane. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Nag OK, Stewart MH, Deschamps JR, Susumu K, Oh E, Tsytsarev V, Tang Q, Efros AL, Vaxenburg R, Black BJ, Chen Y, O’Shaughnessy TJ, North SH, Field LD, Dawson PE, Pancrazio JJ, Medintz IL, Chen Y, Erzurumlu RS, Huston AL, Delehanty JB. Quantum Dot-Peptide-Fullerene Bioconjugates for Visualization of in Vitro and in Vivo Cellular Membrane Potential. ACS NANO 2017; 11:5598-5613. [PMID: 28514167 PMCID: PMC6001310 DOI: 10.1021/acsnano.7b00954] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the development of a quantum dot (QD)-peptide-fullerene (C60) electron transfer (ET)-based nanobioconjugate for the visualization of membrane potential in living cells. The bioconjugate is composed of (1) a central QD electron donor, (2) a membrane-inserting peptidyl linker, and (3) a C60 electron acceptor. The photoexcited QD donor engages in ET with the C60 acceptor, resulting in quenching of QD photoluminescence (PL) that tracks positively with the number of C60 moieties arrayed around the QD. The nature of the QD-capping ligand also modulates the quenching efficiency; a neutral ligand coating facilitates greater QD quenching than a negatively charged carboxylated ligand. Steady-state photophysical characterization confirms an ET-driven process between the donor-acceptor pair. When introduced to cells, the amphiphilic QD-peptide-C60 bioconjugate labels the plasma membrane by insertion of the peptide-C60 portion into the hydrophobic bilayer, while the hydrophilic QD sits on the exofacial side of the membrane. Depolarization of cellular membrane potential augments the ET process, which is manifested as further quenching of QD PL. We demonstrate in HeLa cells, PC12 cells, and primary cortical neurons significant QD PL quenching (ΔF/F0 of 2-20% depending on the QD-C60 separation distance) in response to membrane depolarization with KCl. Further, we show the ability to use the QD-peptide-C60 probe in combination with conventional voltage-sensitive dyes (VSDs) for simultaneous two-channel imaging of membrane potential. In in vivo imaging of cortical electrical stimulation, the optical response of the optimal QD-peptide-C60 configuration exhibits temporal responsivity to electrical stimulation similar to that of VSDs. Notably, however, the QD-peptide-C60 construct displays 20- to 40-fold greater ΔF/F0 than VSDs. The tractable nature of the QD-peptide-C60 system offers the advantages of ease of assembly, large ΔF/F0, enhanced photostability, and high throughput without the need for complicated organic synthesis or genetic engineering, respectively, that is required of traditional VSDs and fluorescent protein constructs.
Collapse
Affiliation(s)
- Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900
| | | | | | - Kimihiro Susumu
- Optical Sciences Division, Code 5600
- Sotera Defense Solutions, Columbia, Maryland 21046, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600
- Sotera Defense Solutions, Columbia, Maryland 21046, United States
| | - Vassiliy Tsytsarev
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander L. Efros
- Materials and Science and Technology Division, Code 6300, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Roman Vaxenburg
- Computational Materials Science Center, George Mason University, Fairfax, Virginia 22030, United States
| | - Bryan J. Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - YungChia Chen
- Center for Bio/Molecular Science and Engineering, Code 6900
| | - Thomas J. O’Shaughnessy
- Materials and Science and Technology Division, Code 6300, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | - Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
12
|
Xie LQ, Liu YZ, Xi ZH, Li HY, Liang SD, Zhu KL. Computer simulations of the interaction of fullerene clusters with lipid membranes. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1332410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Li-qiang Xie
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Yong-zhi Liu
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Zhong-hong Xi
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Hai-yi Li
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
| | - Sheng-de Liang
- Department of Physics, Gansu Normal University for Nationalities, Hezuo, China
- Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing, China
| | - Kai-li Zhu
- Department of Chemistry, Gansu Normal University for Nationalities, Hezuo, China
| |
Collapse
|
13
|
Gupta R, Rai B. Molecular dynamics simulation study of translocation of fullerene C 60 through skin bilayer: effect of concentration on barrier properties. NANOSCALE 2017; 9:4114-4127. [PMID: 28280822 DOI: 10.1039/c6nr09186e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The molecular level permeation mechanism of fullerenes and its derivatives through human skin could open a vast area for designing novel nanoparticles for cosmetics and drug delivery applications. In this study, we report the permeation mechanism of pristine fullerene C60 for the first time through the skin lipid layer, as determined via prolonged unconstrained and constrained coarse-grained molecular dynamics simulations. The skin layer was modelled as an equimolar ratio of ceramides, cholesterol and free fatty acids. It was observed that at lower concentrations fullerenes formed small clusters (3 or 5 molecules) in the aqueous phase, which further spontaneously permeated inside the bilayer and remained dispersed inside the bilayer interior. On the other hand, at higher concentrations fullerenes aggregated in the aqueous layer, penetrated in that form and remained aggregated in the bilayer interior. Lower concentrations of fullerenes did not induce significant structural changes in the bilayer, whereas at higher concentrations undulations were observed. The permeability of fullerene molecules was found to be concentration-dependent and was explained in terms of their free energy of permeation (thermodynamics) and diffusivity (dynamics). On the basis of the aggregation and dispersion of fullerenes, an optimum fullerene concentration was determined, which could be used for drug delivery and cosmetic applications.
Collapse
Affiliation(s)
- Rakesh Gupta
- Physical Science Research Area, TCS™ Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| | - Beena Rai
- Physical Science Research Area, TCS™ Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| |
Collapse
|
14
|
Kulkarni CV, Moinuddin Z, Agarwal Y. Effect of fullerene on the dispersibility of nanostructured lipid particles and encapsulation in sterically stabilized emulsions. J Colloid Interface Sci 2016; 480:69-75. [PMID: 27416287 DOI: 10.1016/j.jcis.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/27/2023]
Abstract
We report on the effect of fullerenes (C60) on the stability of nanostructured lipid emulsions. These (oil-in-water) emulsions are essentially aqueous dispersions of lipid particles exhibiting self-assembled nanostructures at their cores. The majority of previous studies on fullerenes were focused on planar and spherical lipid bilayer systems including pure lipids and liposomes. In this work, fullerenes were interacted with a lipid that forms nanostructured dispersions of non-lamellar self-assemblies. A range of parameters including the composition of emulsions and sonication parameters were examined to determine the influence of fullerenes on in-situ and pre-stabilized lipid emulsions. We found that fullerenes mutually stabilize very low concentrations of lipid molecules, while other concentration emulsions struggle to stay stable or even to form at first instance; we provide hypotheses to support these observations. Interestingly though, we were able to encapsulate varying amounts of fullerenes in sterically stabilized emulsions. This step has a significant positive impact, as we could effectively control an inherent aggregation tendency of fullerenes in aqueous environments. These novel hybrid nanomaterials may open a range of avenues for biotechnological and biomedical applications exploiting properties of both lipid and fullerene nanostructures.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| | - Zeinab Moinuddin
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Yash Agarwal
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom; Metallurgical Engineering & Material Science Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Nisoh N, Karttunen M, Monticelli L, Wong-ekkabut J. Lipid monolayer disruption caused by aggregated carbon nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra17006g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbon nanoparticles (CNP) have significant impact on the Pulmonary Surfactant (PS), the first biological barrier in the respiratory system.
Collapse
Affiliation(s)
- Nililla Nisoh
- Department of Physics
- Faculty of Science
- Kasetsart University
- Bangkok
- Thailand
| | - Mikko Karttunen
- Department of Chemistry and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | | | | |
Collapse
|
16
|
Dallavalle M, Leonzio M, Calvaresi M, Zerbetto F. Explaining Fullerene Dispersion by using Micellar Solutions. Chemphyschem 2014; 15:2998-3005. [DOI: 10.1002/cphc.201402282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/11/2022]
|
17
|
Fileti EE, Chaban VV. Structure and Supersaturation of Highly Concentrated Solutions of Buckyball in 1-Butyl-3-Methylimidazolium Tetrafluoroborate. J Phys Chem B 2014; 118:7376-82. [DOI: 10.1021/jp5020725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Eudes Eterno Fileti
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280, São José dos Campos, SP, Brazil
| | - Vitaly V. Chaban
- MEMPHYS—Center
for Biomembrane Physics, Syddansk Universitet, Odense M, 5230, Kingdom of Denmark
| |
Collapse
|