1
|
Piroozkhah M, Zabihi M, Jalali P, Salehi Z. Comprehensive Multi-Omics Analysis Reveals NPC2 and ITGAV Genes as Potential Prognostic Biomarkers in Gastrointestinal Cancers. Cancer Rep (Hoboken) 2024; 7:e70087. [PMID: 39690926 DOI: 10.1002/cnr2.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Gastrointestinal cancers (GICs) continue to dominate in terms of both incidence and mortality worldwide. Due to the absence of efficient and accurate prognostic biomarkers, the prognosis and treatment outcomes of many GICs are poor. Identifying biomarkers to predict individual clinical outcomes efficiently is a fundamental challenge in clinical oncology. Although several biomarkers have been continually discovered, their predictive accuracy is relatively modest, and their therapeutic use is restricted. In light of this, the discovery of reliable biomarkers for predicting prognosis and outcome in GIC is urgently required. MATERIALS AND METHODS We evaluated the Human Protein Atlas dataset and identified NPC Intracellular Cholesterol Transporter 2 (NPC2) and Integrin Subunit Alpha V (ITGAV) as probable poor predictive genes for these cancers. In addition, we used the GEPIA2, cBioPortal, UALCAN, LinkedOmics, STRING, Enrichr, TISDB, TIMER2.0, hTFTarget, miRTarBase, circBank, and drug-gene interaction database databases to conduct a comprehensive and systematic analysis of the NPC2 and ITGAV genes. RESULT Our results found high expression levels of NPC2 and ITGAV in most GICs. The aforementioned gene expressions were linked to several clinicopathological characteristics of GICs as well as poorer prognosis in LIHC and STAD. The most common alteration type of NPC2 was amplification, and for ITGAV was deep deletion. Significant promotor hypermethylation was also seen in NPC2 and ITGAV in PAAD and COAD, respectively. For the immunologic significance, NPC2 and ITGAV were positively correlated with the abundance of tumor-infiltrating lymphocytes and macrophages. Furthermore, various immunomodulators showed strong correlations with the expression of these genes. There were currently 10 small molecule drugs targeting ITGAV. CONCLUSION Consequently, our bioinformatics analysis showed that NPC2 and ITGAV might be used as potential biomarkers to determine the prognosis of various GICs and are also related to immune infiltration.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Zabihi
- Institute of Biochemistry and Biophysics (IBB), Department of Bioinformatics, Laboratory of Complex Biological Systems and Bioinformatics (CBB), University of Tehran, Tehran, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yao Y, Ren J, Lu J, Sui Y, Gong J, Chen X. Prognostic significance of high NPC2 expression in gastric cancer. Sci Rep 2023; 13:20710. [PMID: 38001127 PMCID: PMC10673825 DOI: 10.1038/s41598-023-47882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and the third leading cause of cancer-related death. The identification of novel biomarkers and therapeutic targets is critical to improve the prognosis. A total of 380 patients with primary gastric cancer from the TCGA database were analyzed. The receiver operating characteristic curves were plotted. We further evaluated the independent prognostic ability of NPC2 expression for overall survival (OS) and relapse-free survival (RFS) through the Kaplan-Meier curve and Cox analysis. The NPC2 expression was significantly higher (P < 0.001) in gastric cancer. High NPC2 expression was significantly (P < 0.0001) associated with poor OS and poor RFS. The age, stage, radiation therapy, residual tumor, and NPC2 expression showed independent prognostic value for OS. The gender and NPC2 expression showed independent prognostic value for RFS. The higher NPC2 expression was observed in gastric cancer, compared with adjacent normal tissue (P < 0.001), confirmed by the IHC staining. The CCK-8 assay showed that NPC2 knockdown inhibits cell proliferation while NPC2 overexpression promotes cell proliferation (P < 0.05). NPC2 expression may serve as a promising prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Yunzhuang Yao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jinnan Ren
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Junhui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yue Sui
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Jingwen Gong
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Xing Chen
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Wang Y, Popovic Z, Charkoftaki G, Garcia-Milian R, Lam TT, Thompson DC, Chen Y, Vasiliou V. Multi-omics profiling reveals cellular pathways and functions regulated by ALDH1B1 in colon cancer cells. Chem Biol Interact 2023; 384:110714. [PMID: 37716420 PMCID: PMC10807983 DOI: 10.1016/j.cbi.2023.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Zeljka Popovic
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
4
|
Transcriptomics and Metabolomics Integration Reveals Redox-Dependent Metabolic Rewiring in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13205058. [PMID: 34680207 PMCID: PMC8534001 DOI: 10.3390/cancers13205058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rewiring glucose metabolism toward aerobic glycolysis provides cancer cells with a rapid generation of pyruvate, ATP, and NADH, while pyruvate oxidation to lactate guarantees refueling of oxidized NAD+ to sustain glycolysis. CtPB2, an NADH-dependent transcriptional co-regulator, has been proposed to work as an NADH sensor, linking metabolism to epigenetic transcriptional reprogramming. By integrating metabolomics and transcriptomics in a triple-negative human breast cancer cell line, we show that genetic and pharmacological down-regulation of CtBP2 strongly reduces cell proliferation by modulating the redox balance, nucleotide synthesis, ROS generation, and scavenging. Our data highlight the critical role of NADH in controlling the oncogene-dependent crosstalk between metabolism and the epigenetically mediated transcriptional program that sustains energetic and anabolic demands in cancer cells.
Collapse
|
5
|
Suk FM, Wang YH, Chiu WC, Liu CF, Wu CY, Chen TL, Liao YJ. Secretory NPC2 Protein-Mediated Free Cholesterol Levels Were Correlated with the Sorafenib Response in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22168567. [PMID: 34445279 PMCID: PMC8395255 DOI: 10.3390/ijms22168567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the world. Sorafenib is the first-line drug for patients with advanced HCC. However, long-term treatment with sorafenib often results in reduced sensitivity of tumor cells to the drug, leading to acquired resistance. Identifying biomarkers which can predict the response to sorafenib treatment may represent a clinical challenge in the personalized treatment era. Niemann-Pick type C2 (NPC2), a secretory glycoprotein, plays an important role in regulating intracellular free cholesterol homeostasis. In HCC patients, downregulation of hepatic NPC2 is correlated with poor clinical pathological features through regulating mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation. This study aimed to investigate the roles of secretory NPC2-mediated free cholesterol levels as biomarkers when undergoing sorafenib treatment and evaluate its impact on acquired sorafenib resistance in HCC cells. Herein, we showed that NPC2 downregulation and free cholesterol accumulation weakened sorafenib’s efficacy through enhancing MAPK/AKT signaling in HCC cells. Meanwhile, NPC2 overexpression slightly enhanced the sorafenib-induced cytotoxic effect. Compared to normal diet feeding, mice fed a high-cholesterol diet had much higher tumor growth rates, whereas treatment with the free cholesterol-lowering agent, hydroxypropyl-β-cyclodextrin, enhanced sorafenib’s tumor-inhibiting ability. In addition, sorafenib treatment induced higher NPC2 secretion, which was mediated by inhibition of the Ras/Raf/MAPK kinase (MEK)/ERK signaling pathway in HCC cells. In both acquired sorafenib-resistant cell and xenograft models, NPC2 and free cholesterol secretion were increased in culture supernatant and serum samples. In conclusion, NPC2-mediated free cholesterol secretion may represent a candidate biomarker for the likelihood of HCC cells developing resistance to sorafenib.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Chiao-Fan Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Chien-Ying Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.W.); (C.-F.L.); (C.-Y.W.)
- Correspondence: ; Tel.: +886-2-27361661-3333
| |
Collapse
|
6
|
Mohammed Y, Michaud SA, Pětrošová H, Yang J, Ganguly M, Schibli D, Flenniken AM, Nutter LMJ, Adissu HA, Lloyd KCK, McKerlie C, Borchers CH. Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. NPJ Syst Biol Appl 2021; 7:25. [PMID: 34050187 PMCID: PMC8163790 DOI: 10.1038/s41540-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/25/2021] [Indexed: 11/24/2022] Open
Abstract
We proteotyped blood plasma from 30 mouse knockout strains and corresponding wild-type mice from the International Mouse Phenotyping Consortium. We used targeted proteomics with internal standards to quantify 375 proteins in 218 samples. Our results provide insights into the manifested effects of each gene knockout at the plasma proteome level. We first investigated possible contamination by erythrocytes during sample preparation and labeled, in one case, up to 11 differential proteins as erythrocyte originated. Second, we showed that differences in baseline protein abundance between female and male mice were evident in all mice, emphasizing the necessity to include both sexes in basic research, target discovery, and preclinical effect and safety studies. Next, we identified the protein signature of each gene knockout and performed functional analyses for all knockout strains. Further, to demonstrate how proteome analysis identifies the effect of gene deficiency beyond traditional phenotyping tests, we provide in-depth analysis of two strains, C8a-/- and Npc2+/-. The proteins encoded by these genes are well-characterized providing good validation of our method in homozygous and heterozygous knockout mice. Ig alpha chain C region, a poorly characterized protein, was among the differentiating proteins in C8a-/-. In Npc2+/- mice, where histopathology and traditional tests failed to differentiate heterozygous from wild-type mice, our data showed significant difference in various lysosomal storage disease-related proteins. Our results demonstrate how to combine absolute quantitative proteomics with mouse gene knockout strategies to systematically study the effect of protein absence. The approach used here for blood plasma is applicable to all tissue protein extracts.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| | - Sarah A Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Juncong Yang
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David Schibli
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California, Davis, CA, USA
| | | | - Christoph H Borchers
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Data Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|
7
|
Bai Y, Yin S, Gbordzor V, Guo Y, Bai Q, Wang S, Wei X, Chen N, Zhang Y, Li W. Increase in plasma Niemann-Pick disease type C2 protein is associated with poor prognosis of sepsis. Sci Rep 2021; 11:5907. [PMID: 33723331 PMCID: PMC7961030 DOI: 10.1038/s41598-021-85478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
The functional significance of extracellular Niemann-Pick disease type C2 protein (NPC2) is poorly defined. It is not known whether there is an association between plasma NPC2 and sepsis. Our exploratory, quantitative proteomic analysis showed a significant increase in the level of plasma NPC2 in moribund sepsis patients. Thus, we subsequently determined NPC2 concentration in plasma from healthy subjects, pneumonia patients and sepsis patients with comorbid pneumonia; and analyzed the association of plasma NPC2 with organ dysfunction and prognosis of sepsis patients. Our data shows that plasma NPC2 concentration was significantly higher in pneumonia and sepsis patients than healthy subjects, and was further increased in sepsis patients when the SOFA score reached 14. In addition, NPC2 concentration was significantly higher in patients that subsequently developed septic shock or died within 30 days. Moreover, NPC2 level showed the strongest association with the degree of renal dysfunction in sepsis patients. In moribund sepsis patients, however, NPC2 had highest correlation coefficient with indicators of coagulation anomaly. Based on these results, we conclude that the increase in plasma NPC2 in sepsis patients is associated with multiple organ failure, possibly results from a deficiency in renal clearance, and may serve as a prognostic marker for sepsis.
Collapse
Affiliation(s)
- Yu Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuangyi Yin
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Vivian Gbordzor
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yu Guo
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Qing Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuaiwei Wang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Xiangyan Wei
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Na Chen
- Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yijie Zhang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| | - Wei Li
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| |
Collapse
|
8
|
Fan C, Yang X, Wang WW, Wang J, Li W, Guo M, Huang S, Wang Z, Liu K. Role of Kv1.3 Channels in Platelet Functions and Thrombus Formation. Arterioscler Thromb Vasc Biol 2020; 40:2360-2375. [PMID: 32787516 DOI: 10.1161/atvbaha.120.314278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Platelet activation by stimulatory factors leads to an increase in intracellular calcium concentration ([Ca
2+
]
i
), which is essential for almost all platelet functions. Modulation of Ca
2+
influx and [Ca
2+
]
i
in platelets has been emerging as a possible strategy for preventing and treating platelet-dependent thrombosis. Voltage-gated potassium 1.3 channels (Kv1.3) are highly expressed in platelets and able to regulate agonist-evoked [Ca
2+
]
i
increase. However, the role of Kv1.3 channels in regulating platelet functions and thrombosis has not yet been elucidated. In addition, it is difficult to obtain a specific blocker for this channel, since Kv1.3 shares identical drug-binding sites with other K
+
channels. Here, we investigate whether specific blockade of Kv1.3 channels by monoclonal antibodies affects platelet functions and thrombosis.
Approach and Results:
In this study, we produced the anti-Kv1.3 monoclonal antibody 6E12#15, which could specifically recognize both human and mouse Kv1.3 proteins and sufficiently block Kv1.3 channel currents. We found Kv1.3 blockade by 6E12#15 inhibited platelet aggregation, adhesion, and activation upon agonist stimulation. In vivo treatment with 6E12#15 alleviated thrombus formation in a mesenteric arteriole thrombosis mouse model and protected mice from collagen/epinephrine-induced pulmonary thromboembolism. Furthermore, we observed Kv1.3 regulated platelet functions by modulating Ca
2+
influx and [Ca
2+
]
i
elevation, and that this is mediated in part by P2X
1
. Interestingly,
Kv1.3
−/−
mice showed impaired platelet aggregation while displayed no abnormalities in in vivo thrombus formation. This phenomenon was related to more megakaryocytes and platelets produced in
Kv1.3
−/−
mice compared with wild-type mice.
Conclusions:
We showed specific inhibition of Kv1.3 by the novel monoclonal antibody 6E12#15 suppressed platelet functions and platelet-dependent thrombosis through modulating platelet [Ca
2+
]
i
elevation. These results indicate that Kv1.3 could act as a promising therapeutic target for antiplatelet therapies.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Xiaofang Yang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, China (X.Y.)
| | | | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.W.)
| | - Wenzhu Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (W.L.)
| | - Mengyuan Guo
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Kun Liu
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.L.)
| |
Collapse
|
9
|
Hede E, Christiansen CB, Heegaard CW, Moos T, Burkhart A. Gene therapy to the blood-brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease. J Neurochem 2020; 156:290-308. [PMID: 32072649 DOI: 10.1111/jnc.14982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Treatment of many diseases affecting the central nervous system (CNS) is complicated by the inability of several therapeutics to cross the blood-brain barrier (BBB). Genetically modifying brain capillary endothelial cells (BCECs) denotes an approach to overcome the limitations of the BBB by turning BCECs into recombinant protein factories. This will result in protein secretion toward both the brain and peripheral circulation, which is particularly relevant in genetic diseases, like lysosomal storage diseases (LSD), where cells are ubiquitously affected both in the CNS and the periphery. Here we investigated transfection of primary rat brain capillary endothelial cells (rBCECs) for synthesis and secretion of recombinant NPC2, the protein deficient in the lysosomal cholesterol storage disease Niemann Pick type C2. We demonstrate prominent NPC2 gene induction and protein secretion in 21% of BCECs in non-mitotic monocultures with a biological effect on NPC2-deficient fibroblasts as verified from changes in filipin III staining of cholesterol deposits. By comparison the transfection efficiency was 75% in HeLa-cells, known to persist in a mitotic state. When co-cultured with primary rat astrocytes in conditions with maintained BBB properties 7% BCECs were transfected, clearly suggesting that induction of BBB properties with polarized conditions of the non-mitotic BCECs influences the transfection efficacy and secretion directionality. In conclusion, non-viral gene therapy to rBCECs leads to protein secretion and signifies a method for NPC2 to target cells inside the CNS otherwise inaccessible because of the presence of the BBB. However, obtaining high transfection efficiencies is crucial in order to achieve sufficient therapeutic effects. Cover Image for this issue: https://doi.org/10.1111/jnc.15050.
Collapse
Affiliation(s)
- Eva Hede
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christine B Christiansen
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics - Molecular Nutrition, Aarhus University, Aarhus, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Wang YH, Twu YC, Wang CK, Lin FZ, Lee CY, Liao YJ. Niemann-Pick Type C2 Protein Regulates Free Cholesterol Accumulation and Influences Hepatic Stellate Cell Proliferation and Mitochondrial Respiration Function. Int J Mol Sci 2018; 19:ijms19061678. [PMID: 29874879 PMCID: PMC6032364 DOI: 10.3390/ijms19061678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-β1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3β (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei 106, Taiwan.
| | - Fu-Zhen Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Ya Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Abstract
BACKGROUND AND AIMS Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-ɣ (PPARG) gene expression was reduced. CONCLUSIONS NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.
Collapse
|
12
|
Niemann-Pick Type C2 Protein Mediates Hepatic Stellate Cells Activation by Regulating Free Cholesterol Accumulation. Int J Mol Sci 2016; 17:ijms17071122. [PMID: 27420058 PMCID: PMC4964497 DOI: 10.3390/ijms17071122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-β1 (TGF-β1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-β1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-β1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.
Collapse
|
13
|
Wahl P, Ducasa GM, Fornoni A. Systemic and renal lipids in kidney disease development and progression. Am J Physiol Renal Physiol 2016; 310:F433-45. [PMID: 26697982 PMCID: PMC4971889 DOI: 10.1152/ajprenal.00375.2015] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
Altered lipid metabolism characterizes proteinuria and chronic kidney diseases. While it is thought that dyslipidemia is a consequence of kidney disease, a large body of clinical and experimental studies support that altered lipid metabolism may contribute to the pathogenesis and progression of kidney disease. In fact, accumulation of renal lipids has been observed in several conditions of genetic and nongenetic origins, linking local fat to the pathogenesis of kidney disease. Statins, which target cholesterol synthesis, have not been proven beneficial to slow the progression of chronic kidney disease. Therefore, other therapeutic strategies to reduce cholesterol accumulation in peripheral organs, such as the kidney, warrant further investigation. Recent advances in the understanding of the biology of high-density lipoprotein (HDL) have revealed that functional HDL, rather than total HDL per se, may protect from both cardiovascular and kidney diseases, strongly supporting a role for altered cholesterol efflux in the pathogenesis of kidney disease. Although the underlying pathophysiological mechanisms responsible for lipid-induced renal damage have yet to be uncovered, several studies suggest novel mechanisms by which cholesterol, free fatty acids, and sphingolipids may affect glomerular and tubular cell function. This review will focus on the clinical and experimental evidence supporting a causative role of lipids in the pathogenesis of proteinuria and kidney disease, with a primary focus on podocytes.
Collapse
Affiliation(s)
- Patricia Wahl
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Gloria Michelle Ducasa
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Chen Y, Wang L, Li L, Zhang H, Yuan Z. Informative gene selection and the direct classification of tumors based on relative simplicity. BMC Bioinformatics 2016; 17:44. [PMID: 26792270 PMCID: PMC4721022 DOI: 10.1186/s12859-016-0893-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Selecting a parsimonious set of informative genes to build highly generalized performance classifier is the most important task for the analysis of tumor microarray expression data. Many existing gene pair evaluation methods cannot highlight diverse patterns of gene pairs only used one strategy of vertical comparison and horizontal comparison, while individual-gene-ranking method ignores redundancy and synergy among genes. RESULTS Here we proposed a novel score measure named relative simplicity (RS). We evaluated gene pairs according to integrating vertical comparison with horizontal comparison, finally built RS-based direct classifier (RS-based DC) based on a set of informative genes capable of binary discrimination with a paired votes strategy. Nine multi-class gene expression datasets involving human cancers were used to validate the performance of new method. Compared with the nine reference models, RS-based DC received the highest average independent test accuracy (91.40%), the best generalization performance and the smallest informative average gene number (20.56). Compared with the four reference feature selection methods, RS also received the highest average test accuracy in three classifiers (Naïve Bayes, k-Nearest Neighbor and Support Vector Machine), and only RS can improve the performance of SVM. CONCLUSIONS Diverse patterns of gene pairs could be highlighted more fully while integrating vertical comparison with horizontal comparison strategy. DC core classifier can effectively control over-fitting. RS-based feature selection method combined with DC classifier can lead to more robust selection of informative genes and classification accuracy.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Lifeng Wang
- Biotechnology Research Center, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Lanzhi Li
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Hongyan Zhang
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China. .,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
15
|
Engelmann JC, Amann T, Ott-Rötzer B, Nützel M, Reinders Y, Reinders J, Thasler WE, Kristl T, Teufel A, Huber CG, Oefner PJ, Spang R, Hellerbrand C. Causal Modeling of Cancer-Stromal Communication Identifies PAPPA as a Novel Stroma-Secreted Factor Activating NFκB Signaling in Hepatocellular Carcinoma. PLoS Comput Biol 2015; 11:e1004293. [PMID: 26020769 PMCID: PMC4447342 DOI: 10.1371/journal.pcbi.1004293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/17/2015] [Indexed: 01/26/2023] Open
Abstract
Inter-cellular communication with stromal cells is vital for cancer cells. Molecules involved in the communication are potential drug targets. To identify them systematically, we applied a systems level analysis that combined reverse network engineering with causal effect estimation. Using only observational transcriptome profiles we searched for paracrine factors sending messages from activated hepatic stellate cells (HSC) to hepatocellular carcinoma (HCC) cells. We condensed these messages to predict ten proteins that, acting in concert, cause the majority of the gene expression changes observed in HCC cells. Among the 10 paracrine factors were both known and unknown cancer promoting stromal factors, the former including Placental Growth Factor (PGF) and Periostin (POSTN), while Pregnancy-Associated Plasma Protein A (PAPPA) was among the latter. Further support for the predicted effect of PAPPA on HCC cells came from both in vitro studies that showed PAPPA to contribute to the activation of NFκB signaling, and clinical data, which linked higher expression levels of PAPPA to advanced stage HCC. In summary, this study demonstrates the potential of causal modeling in combination with a condensation step borrowed from gene set analysis [Model-based Gene Set Analysis (MGSA)] in the identification of stromal signaling molecules influencing the cancer phenotype. All living cells rely on communication with other cells to ensure their function and survival. Molecular signals are sent among cells of the same cell type and from cells of one cell type to another. In cancer, not only the cancer cells themselves are responsible for the malignancy, but also stromal (non-cancerous) cells and the molecular signals they send to cancer cells are important factors that determine the severity and outcome of the disease. Therefore, the identification of stromal signals and their influence on cancer cells is important for the development of novel treatment strategies. With a computational systems biology model of stroma-cancer cell communication, we have compiled a set of ten proteins secreted by stromal cells that shape the cancer phenotype. Most importantly, our causal analysis uncovered Pregnancy-Associated Plasma Protein A (PAPPA) as a novel paracrine inducer of the pro-tumorigenic NFκB signaling pathway. In liver cancer patients, higher levels of PAPPA protein indicate a more progressed tumor stage, confirming its clinical relevance.
Collapse
Affiliation(s)
- Julia C. Engelmann
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
- * E-mail: (JCE); (RS); (CH)
| | - Thomas Amann
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Birgitta Ott-Rötzer
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Margit Nützel
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Yvonne Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Wolfgang E. Thasler
- Biobank under the authority of Human Tissue and Cell Research (HTCR) and Center for Liver Cell Research, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Theresa Kristl
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Salzburg, Austria
| | - Andreas Teufel
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Christian G. Huber
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, University of Salzburg, Salzburg, Austria
| | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
- * E-mail: (JCE); (RS); (CH)
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
- * E-mail: (JCE); (RS); (CH)
| |
Collapse
|
16
|
Liao YJ, Fang CC, Yen CH, Hsu SM, Wang CK, Huang SF, Liang YC, Lin YY, Chu YT, Arthur Chen YM. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: Clinicopathological correlations and therapeutical implications. Int J Cancer 2015; 137:1341-51. [PMID: 25754535 DOI: 10.1002/ijc.29507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Abstract
Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of National Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei, Taiwan
| | - Shiu-Feng Huang
- Division of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ying-Yu Lin
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tseng Chu
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 2014; 5:169. [PMID: 25352833 PMCID: PMC4196552 DOI: 10.3389/fendo.2014.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami,1580 NW 10th Ave, Batchelor Bldg, Room 628, Miami, FL 33136, USA e-mail:
| | - Christopher E. Pedigo
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Armando J. Mendez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|