1
|
Thellier M, Houzé S, Pradine B, Piarroux R, Musset L, Kendjo E. Assessment of electronic surveillance and knowledge, attitudes, and practice (KAP) survey toward imported malaria surveillance system acceptance in France. JAMIA Open 2022; 5:ooac012. [PMID: 35571356 PMCID: PMC9097633 DOI: 10.1093/jamiaopen/ooac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Objective An electronic surveillance system was released to monitor morbidity and mortality
incidence of imported malaria cases, investigate autochthonous cases, and assess
chemosensitivity of Plasmodium isolates among travelers to and from
endemic areas. The aim of this study is to evaluate the use of an electronic
surveillance system for imported malaria in France. Materials and Methods Three main indicators were used to assess the online malaria web-based surveillance
system: (1) the quality of the surveillance system; (2) the capacity of the online
system to early warning in case of particular events of public health; (3) the
knowledge, attitude, and practice of online electronic system by practitioners of
malaria network in France. Results Overall, the median time onset a case is reported to the system decrease by 99%,
ranging from 227 days (144–309) to 2 days (1–6) in 2006 and 2020, respectively. Conclusion The online malaria surveillance system in France has demonstrated its effectiveness and
can therefore be extended to carry out numerous investigations linked to research on
malaria. We describe the surveillance activities of the imported malaria surveillance in travelers
from and to endemic areas in France caused by the bite of infected mosquitoes.
Furthermore, we evaluate how the participants to the network navigate, appreciate, and
report their diagnosed cases to the French National Reference Center for malaria. The main
findings are the stability of the network from 1996 through 2020; the reduction of the
time between the diagnosis and the declaration of the case in the database. This study
provides the effectiveness and ability of this surveillance system to carry out numerous
investigations linked to research on malaria and the willingness of their members to
participate in the surveillance of imported malaria.
Collapse
Affiliation(s)
- Marc Thellier
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France
- Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Service de parasitologie, Paris, France
- AP-HP, Centre National de Référence du Paludisme, Paris, France
| | - Sandrine Houzé
- AP-HP, Centre National de Référence du Paludisme, Paris, France
- Parasitology and Mycology Laboratory, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Bruno Pradine
- Unité Parasitologie et Entomologie, Institut de Recherche Biomédicale des Armées, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Aix Marseille Université, Marseille, France
- IRD, AP-HM, SSA, VITROME, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France
- AP-HP, Centre National de Référence du Paludisme, Paris, France
| | - Lise Musset
- Laboratoire de Parasitologie, WHO Collaborating Centre for Surveillance of Anti-Malarial Drug Resistance, Centre National de Référence du paludisme, Institut Pasteur de la Guyane, Cayenne, France
| | - Eric Kendjo
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France
- Sorbonne Université, APHP, Hôpital Pitié-Salpêtrière, Service de parasitologie, Paris, France
- AP-HP, Centre National de Référence du Paludisme, Paris, France
| | | |
Collapse
|
2
|
Gendrot M, Madamet M, Mosnier J, Fonta I, Amalvict R, Benoit N, Briolant S, Pradines B. Baseline and multinormal distribution of ex vivo susceptibilities of Plasmodium falciparum to methylene blue in Africa, 2013-18. J Antimicrob Chemother 2021; 75:2141-2148. [PMID: 32407538 DOI: 10.1093/jac/dkaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to most antimalarial compounds has emerged in Southeast Asia and spread to Africa. In this context, the development of new antimalarial drugs is urgent. OBJECTIVES To determine the baseline in vitro activity of methylene blue (Proveblue®) on African isolates and to determine whether parasites have different phenotypes of susceptibility to methylene blue. METHODS Ex vivo susceptibility to methylene blue was measured for 609 P. falciparum isolates of patients hospitalized in France for malaria imported from Africa. A Bayesian statistical analysis was designed to describe the distribution of median effective concentration (EC50) estimates. RESULTS The EC50 ranged from 0.16 to 87.2 nM with a geometric mean of 7.17 nM (95% CI = 6.21-8.13). The 609 EC50 values were categorized into four components: A (mean = 2.5 nM; 95% CI = 2.28-2.72), B (mean = 7.44 nM; 95% CI = 7.07-7.81), C (mean = 16.29 nM; 95% CI = 15.40-17.18) and D (mean = 38.49 nM; 95% CI = 34.14-42.84). The threshold value for in vitro reduced susceptibility to methylene blue was estimated at 35 nM using the geometric mean of EC50 plus 2 SDs of the 609 isolates. This cut-off also corresponds to the lower limit of the 95% CI of the methylene blue EC50 of component D. Thirty-five isolates (5.7%) displayed EC50 values above this threshold. CONCLUSIONS Methylene blue exerts a promising efficacy against P. falciparum and is a potential partner for triple combinations.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Joel Mosnier
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Sébastien Briolant
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| |
Collapse
|
3
|
Niba PTN, Nji AM, Evehe MS, Ali IM, Netongo PM, Ngwafor R, Moyeh MN, Ngum LN, Ndum OE, Acho FA, Mbu'u CM, Fosah DA, Atogho-Tiedeu B, Achonduh-Atijegbe O, Djokam-Dadjeu R, Chedjou JPK, Bigoga JD, Moukoko CEE, Ajua A, Achidi E, Tallah E, Leke RGF, Tourgordi A, Ringwald P, Alifrangis M, Mbacham WF. Drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon: a systematic review and meta-analysis (1998-2020). Malar J 2021; 20:32. [PMID: 33422080 PMCID: PMC7796563 DOI: 10.1186/s12936-020-03543-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. METHODS The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran's Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. RESULTS Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1-42.3%). Between 1998 and 2020, there was significant decline (P < 0.0001 for all) in key mutants including Pfcrt 76 T (79.9%-43.0%), Pfmdr1 86Y (82.7%-30.5%), Pfdhfr 51I (72.2%-66.9%), Pfdhfr 59R (76.5%-67.8%), Pfdhfr 108 N (80.8%-67.6%). The only exception was Pfdhps 437G which increased over time (30.4%-46.9%, P < 0.0001) and Pfdhps 540E that remained largely unchanged (0.0%-0.4%, P = 0.201). Exploring mutant haplotypes, the study observed a significant increase in the prevalence of Pfcrt CVIET mixed quintuple haplotype from 57.1% in 1998 to 57.9% in 2020 (P < 0.0001). In addition, within the same study period, there was no significant change in the triple Pfdhfr IRN mutant haplotype (66.2% to 67.3%, P = 0.427). The Pfk13 amino acid polymorphisms associated with artemisinin resistance were not detected. CONCLUSIONS This review reported an overall decline in the prevalence of P. falciparum gene mutations conferring resistance to 4-aminoquinolines and amino alcohols for a period over two decades. Resistance to artemisinins measured by the presence of SNPs in the Pfk13 gene does not seem to be a problem in Cameroon. Systematic review registration PROSPERO CRD42020162620.
Collapse
Affiliation(s)
- Peter Thelma Ngwa Niba
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Akindeh M Nji
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie-Solange Evehe
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Innocent M Ali
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Palmer Masumbe Netongo
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Randolph Ngwafor
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Marcel N Moyeh
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lesley Ngum Ngum
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Oliva Ebie Ndum
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Université Des Montagnes, Banganté, West Region, Cameroon
| | - Fon Abongwa Acho
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
| | - Cyrille Mbanwi Mbu'u
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Microbiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Dorothy A Fosah
- National Malaria Control Programme, Ministry of Public Health, Yaoundé, Cameroon
| | - Barbara Atogho-Tiedeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Rosine Djokam-Dadjeu
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Kengne Chedjou
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jude D Bigoga
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Carole Else Eboumbou Moukoko
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Malaria Research Service, Centre Pasteur Cameroon, Yaoundé, Cameroon
| | - Anthony Ajua
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Eric Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Esther Tallah
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Rose G F Leke
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon
| | - Alexis Tourgordi
- The Cameroon Office of the World Health Organization, Yaoundé, Cameroon
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wilfred F Mbacham
- MARCAD-DELTAS Programme, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.
- The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon.
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.
- Malaria Consortium-Cameroon Coalition Against Malaria, Yaoundé, Cameroon.
| |
Collapse
|
4
|
Zomuanpuii R, Hmar CL, Lallawmzuala K, Hlimpuia L, Balabaskaran Nina P, Senthil Kumar N. Epidemiology of malaria and chloroquine resistance in Mizoram, northeastern India, a malaria-endemic region bordering Myanmar. Malar J 2020; 19:95. [PMID: 32103751 PMCID: PMC7045395 DOI: 10.1186/s12936-020-03170-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Mizoram, a northeastern state in India, shares international borders with Myanmar and Bangladesh and is considered to be one of the key routes through which drug-resistant parasites of Southeast Asia enter mainland India. Despite its strategic location and importance, malaria epidemiology and molecular status of chloroquine resistance had not been well documented, and since chloroquine (CQ), as the first-line treatment in Plasmodium falciparum infection was discontinued since 2008, it was expected that CQ-sensitive haplotype would be more abundant. Methods Malaria epidemiology data for the period 2010 to 2018 was collected from the office of State Vector Disease Control Programme. Plasmodium falciparum-positive blood samples were collected from government district hospitals, community health centres, primary health centres, sub-centres, and diagnostic centres from six malaria-prone districts. The samples were processed and analysed using genes–P. falciparum chloroquine-resistant transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) via sequencing of PCR amplicon from 2015 to 2017. Results Malaria occurred throughout the year and P. falciparum accounted for > 89% of total malaria cases. During 2010–2018, the highest number of malaria incidence was recorded in Lawngtlai (36% of total malaria cases; average API2010–2018 of 34.8) while Champhai remained consistently low (0.4%; average API2010–2018 of 0.04). Males of ≥ 15 years old contributed maximum (35.7%) among gender and age malarial distribution recorded during 2014–2018. Death due to malaria gradually decreased over the years. A higher abundance of mutated pfcrt (58.5% of the total sample analysed) and a lower prevalence of mutated pfmdr1 (48.7%) were observed. All mutations identified for pfcrt belong to the Southeast Asian CVIET haplotype. Only a single point mutation was observed at 86 (N → Y) position in pfmdr1 (48.7%). The key N86Y mutation in pfmdr1 that had been shown to modulate CQR was found in 67.1% of the samples positive for the CVIET haplotype. Conclusions This is the first report that details malaria epidemiology and also the molecular status of CQ-resistance in P. falciparum population of the region. The efforts of the State Vector Borne Disease Control Programme have proved to be quite effective in controlling the malaria burden in the state. Despite the discontinuation of CQ for a decade, local P. falciparum is observed with decreased CQ-sensitive haplotype. It is believed that the present findings will form a basis for further studies on genetic diversity in P. falciparum, which could confer better understanding of the complexity of the disease in Southeast Asia.
Collapse
Affiliation(s)
- Rita Zomuanpuii
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India.
| | - Christopher L Hmar
- Department of Orthopaedics, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Khawlhring Lallawmzuala
- Department of Medicine, District Hospital, Government of Mizoram, Serchhip, Aizawl, Mizoram, India
| | - Lal Hlimpuia
- State Vector Disease Control Programme, Department of Health and Family Welfare, Government of Mizoram, Aizawl, Mizoram, India
| | - Praveen Balabaskaran Nina
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Tiruvarur, Tamil Nadu, India
| | | |
Collapse
|
5
|
Dagnogo O, Ako AB, Ouattara L, Dago ND, Coulibaly DN, Touré AO, Djaman JA. Towards a re-emergence of chloroquine sensitivity in Côte d'Ivoire? Malar J 2018; 17:413. [PMID: 30404640 PMCID: PMC6223040 DOI: 10.1186/s12936-018-2551-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance of Plasmodium falciparum to anti-malarial drugs has hampered efforts to eradicate malaria. Recent reports of a decline in the prevalence of chloroquine-resistant P. falciparum in several countries, including Malawi and Zambia, is raising the hope of reintroducing chloroquine in the near future, ideally in combination with another anti-malarial drug for the treatment of uncomplicated malaria. In Côte d'Ivoire, the decrease in the clinical efficacy of chloroquine, in addition to a high proportion of clinical isolates carrying the Thr-76 mutant allele of the pfcrt gene, had led to the discontinuation of the use of chloroquine in 2004. Previous studies have indicated the persistence of a high prevalence of the Thr-76 mutant allele despite the withdrawal of chloroquine as first-line anti-malarial drug. This present study is conducted to determine the prevalence of the Thr-76T mutant allele of the Pfcrt gene after a decade of the ban on the sale and use of chloroquine in Côte d'Ivoire. RESULTS Analysis of the 64 sequences from all three study sites indicated a prevalence of 15% (10/64) of the Thr-76 mutant allele against 62% (40/64) of the Lys-76 wild-type allele. No mutation of the allele Thr-76 was observed at Anonkoua Kouté while this mutant allele was in 31% (5/16) and 25% (5/20) of isolate sequences from Port-Bouët and Ayamé respectively. CONCLUSION More than a decade after the discontinuation of the use of chloroquine in Côte d'Ivoire, the proportion of parasites sensitive to this anti-malarial seems to increase in Anonkoua-kouté, Port-bouët and Ayamé.
Collapse
Affiliation(s)
- Oléfongo Dagnogo
- UFR Biosciences, Félix Houphouët-Boigny University, BP V 34, Abidjan 01, Côte d'Ivoire.,Institut Pasteur of Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | | | - Lacinan Ouattara
- Department of Food Science and Technology, Nangui Abrogoua University, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Noel Dougba Dago
- UFR Sciences Biologiques, Péléforo Gon Coulibaly University, BP1328, Korhogo, Côte d'Ivoire
| | | | | | - Joseph Allico Djaman
- UFR Biosciences, Félix Houphouët-Boigny University, BP V 34, Abidjan 01, Côte d'Ivoire. .,Institut Pasteur of Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire.
| |
Collapse
|
6
|
Pradines B, Rogier C. Contribution of the French army health service in support of expertise and research in infectiology in Africa. New Microbes New Infect 2018; 26:S78-S82. [PMID: 30402247 PMCID: PMC6205563 DOI: 10.1016/j.nmni.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
Historically, infectious diseases have caused more casualties than battle. The French military health service therefore developed a range of research on vector-borne diseases such as malaria and arboviruses, antibiotic resistance, infectious agents that can be used as biological weapons and vaccines. The main objective is to control naturally acquired or provoked infectious diseases and limit their impact on armed forces as well as on civilian populations in France or abroad, particularly in Africa and anywhere French armies may be deployed. The expertise of the military health service teams in manipulating agents requiring high level of biosafety precautions and in organizing and providing medical care in unnatural conditions, including the battlefield, associated with complementarity staff experience (physicians, biologists, epidemiologists, researchers, pharmacists, logisticians), has been used in the management of the Ebola outbreak in Guinea.
Collapse
Affiliation(s)
- B. Pradines
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de recherche biomédicale des armées, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Centre national de référence du paludisme, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
| | - C. Rogier
- Division Expertise et stratégie santé de défense, Direction centrale du service de santé des armées, Paris, France
| |
Collapse
|
7
|
Malaria, tuberculosis and HIV: what's new? Contribution of the Institut Hospitalo-Universitaire Méditerranée Infection in updated data. New Microbes New Infect 2018; 26:S23-S30. [PMID: 30402240 PMCID: PMC6205578 DOI: 10.1016/j.nmni.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
The Institut Hospitalo-Universitaire Méditerranée Infection is positioned for the diagnosis, prevention and treatment of the ‘big three’ killer diseases: malaria, tuberculosis and HIV. We implemented the use of new diagnostic samples such as stools and new diagnostic tests such as mass spectrometry for the dual identification of vectors and pathogens. Furthermore, advances in the prevention and treatment of malaria and tuberculosis are reviewed, along with advances in the understanding of the role of microbiota in the resistance to HIV infection. These achievements represent a major step towards a better management of the ‘big three’ diseases worldwide.
Collapse
|
8
|
Gautret P, Pradines B, Memish ZA, Sokhna C, Parola P. Mobile populations across the Mediterranean Sea and beyond: travel medicine, mass gathering medicine and homeless health. New Microbes New Infect 2018; 26:S96-S99. [PMID: 30402250 PMCID: PMC6205569 DOI: 10.1016/j.nmni.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022] Open
Abstract
The Méditerranée Infection institute is internationally recognized for its expertise in infectious diseases and tropical medicine, and is one of the most active research centres for infectious diseases in Europe. Surveillance and research addressing infectious diseases in globally mobile populations is one of the strong components of the research conducted at the institute. A significant amount of clinical, microbiologic and epidemiologic works have been conducted in international travellers, pilgrims participating in large international religious gatherings, economic migrants and homeless migrant people over the last decades by our group. Our strong anchoring in several countries around the Mediterranean Sea and beyond, as well as the pivotal role of Marseille in the EuroTravNet and GeoSentinel international networks that monitor travel-associated diseases, reinforce our leading position in the fields of travel and tropical medicine, mass gathering medicine and homeless health.
Collapse
Affiliation(s)
- P Gautret
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, France
| | - B Pradines
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, France.,Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, France.,Centre National de Référence du Paludisme, Institut Hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Z A Memish
- Department of Medicine, College of Medicine, Alfaisal University & Infectious Diseases Division, Prince Mohamed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - C Sokhna
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, France
| | - P Parola
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, France
| |
Collapse
|
9
|
Zhou RM, Zhang HW, Yang CY, Liu Y, Zhao YL, Li SH, Qian D, Xu BL. Molecular mutation profile of pfcrt in Plasmodium falciparum isolates imported from Africa in Henan province. Malar J 2016; 15:265. [PMID: 27160572 PMCID: PMC4862149 DOI: 10.1186/s12936-016-1306-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/21/2016] [Indexed: 01/11/2023] Open
Abstract
Background Anti-malarial drug resistance is a primary public health problem. Haplotypes of pfcrt gene have been implicated to be molecular markers of chloroquine (CQ) resistance. This study aims to explore the prevalence of polymorphisms in pfcrt in Plasmodium falciparum-infected patients imported from Africa in Henan province. Methods Blood samples were collected from 502 patients who were infected with P. falciparum returning from Africa in Henan province during 2012–2015. The single nucleotide polymorphisms in pfcrt (codons 72–76) were assessed by nested PCR with DNA sequencing and restriction digestion, the haplotype prevalences were also determined. Results Four haplotypes coding 72–76 of pfcrt were found including CVMNK (wild type), CVIET (mutation type), CVIEK (mutation type), and CV M/I N/E/D/K K/T (mixed type), with 61.95 % (311/502), 33.07 % (166/502), 0.20 % (1/502), and 4.78 % (24/502) prevalence, respectively. Except mixed type, CVIET and CVIEK were the largest proportion of the mutant type in West Africa, accounting for 44.83 % (91/203), followed by East Africa (8/21, 38.10 %), North Africa (4/11, 36.36 %), Central Africa (36/135, 26.67 %), and South Africa (28/132, 21.21 %). There was significant difference among the groups (χ2 = 23.78, P < 0.05). Mixed type was the largest proportion in North Africa (9.09 %), followed by Central Africa (6.67 %), East Africa (4.76 %), South Africa (4.55 %), and West Africa (3.45 %). There was no significant difference among the groups (χ2 = 2.31, P > 0.05). The position 72 and 73 of pfcrt showed predominance for the wild type with rates of 100 % (502/502). Conclusions This study identified four haplotypes of pfcrt in P. falciparum-infected patients imported from Africa in Henan province. The prevalence of mutations in the pfcrt was dropped comparing with other people’s researches. It establishes fundamental data for detection of P. falciparum CQR with molecular markers for the imported P. falciparum in China, and it also provides complementary information of CQR for the malaria endemic countries and assesses the evolution of anti-malarial drug resistance.
Collapse
Affiliation(s)
- Rui-Min Zhou
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Hong-Wei Zhang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Cheng-Yun Yang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Yu-Ling Zhao
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Su-Hua Li
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Bian-Li Xu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China.
| |
Collapse
|
10
|
Probucol-Induced α-Tocopherol Deficiency Protects Mice against Malaria Infection. PLoS One 2015; 10:e0136014. [PMID: 26296197 PMCID: PMC4546625 DOI: 10.1371/journal.pone.0136014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022] Open
Abstract
The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction.
Collapse
|