1
|
Elamin A, Sakuda S. Mechanism of Mycotoxin Contamination of Medicinal Herbs. Toxins (Basel) 2025; 17:139. [PMID: 40137912 PMCID: PMC11945524 DOI: 10.3390/toxins17030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Mycotoxin contamination in medicinal plants can lead to toxicity, reduced therapeutic efficacy, and economic losses. This contamination has emerged as a significant issue, drawing attention from researchers and research centers worldwide. Over recent decades, numerous analytical studies have addressed mycotoxin contamination in these herbs, evaluating various methods to determine their presence quantitatively and qualitatively. While several reviews have summarized these studies, they often overlook a comprehensive exploration of the mechanisms and influencing factors of mycotoxin contamination in medicinal herbs. Therefore, this review aims to delve into the mechanisms of aflatoxin and ochratoxin contamination in some of the most widespread medicinal herbs, including jujube fruits, lotus seeds, and licorice roots. The factors influencing these mechanisms were also examined, including the physical composition and maturity stages of the herbs. This review concluded that aflatoxin and ochratoxin A contamination of medicinal herbs involves complex interactions between the herbs' natural defenses, fungal pathogenicity, chemical composition, physical characteristics, and individual plant differences at various maturity stages. Understanding these mechanisms of contamination, and their association with maturity, nutrient profile, and physical development, advances our comprehension of mycotoxin contamination in medicinal herbs.
Collapse
Affiliation(s)
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya City 320-8551, Tochigi Prefecture, Japan;
| |
Collapse
|
2
|
Bouhoudan A, Bakkach J, Khaddor M, Mourabit N. Anticancer Effect of Mycotoxins From Penicillium aurantiogriseum: Exploration of Natural Product Potential. Int J Microbiol 2024; 2024:5553860. [PMID: 39669001 PMCID: PMC11637627 DOI: 10.1155/ijm/5553860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Research into biologically natural substances with antitumor properties, known for their potential to induce fewer side effects and exhibit specificity toward cancerous cells, remains imperative. The pressing demand for novel agents in cancer therapy underscores the intensive investigation of natural products from microorganisms. Penicillium aurantiogriseum, frequently isolated from food and feed, emerges as a promising candidate against pathogenic bacteria and fungi. This species harbors numerous mycotoxins that warrant extensive clinical study due to their potential in cancer treatment. Identifying mycotoxins with anticancer properties produced by P. aurantiogriseum could unveil novel therapeutic targets and enrich the pharmacological landscape. This review provides a comprehensive overview of the utilization of P. aurantiogriseum mycotoxins in cancer research and elucidates therapeutic agents' advantages and limitations. P. aurantiogriseum produces at least 15 mycotoxins with potent anticancer effects mediated through diverse mechanisms, including enzyme inhibition (e.g., pseurotin), induction of apoptosis (e.g., auranthine, aurantiamides A, aurantiomides A-C, penicillic acid, penitrem, verrucisidinol, acetate verrucosidinol, and chaetoglobosin A), and cell-cycle arrest (e.g., anicequol, aurantiamine, and Taxol). Although certain mycotoxins, such as Taxol, Anacin, and Compactin, are used in commerce, many others remain relatively unexplored. The mycotoxins derived from P. aurantiogriseum hold considerable potential for cancer treatment, offering novel therapeutic avenues and enhancing current treatments through synergistic combinations and advanced delivery systems.
Collapse
Affiliation(s)
- Assia Bouhoudan
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| | - Joaira Bakkach
- Department of Biology, Higher Institute of Nursing Professions and Health Techniques of Tetouan, Al-Hoceima 93000, Morocco
| | - Mustapha Khaddor
- Regional Center for Careers Education and Training of Tangier, Tangier 90000, Morocco
| | - Nadira Mourabit
- Department of Biology, Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques of Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Al-Hoceima, Morocco
| |
Collapse
|
3
|
Hu M, Wang L, Su D, Yuan Q, Xiao C, Guo L, Wang M, Kang C, Zhang J, Zhou T. Evaluation of mycotoxins, mycobiota and toxigenic fungi in the traditional medicine Radix Dipsaci. Front Microbiol 2024; 15:1454683. [PMID: 39372267 PMCID: PMC11452847 DOI: 10.3389/fmicb.2024.1454683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. However, inevitable contaminants, including mycotoxins, in medicinal herbs can cause serious problems for humans despite their health benefits. The increasing consumption of medicinal plants has made their use a public health problem due to the lack of effective surveillance of the use, efficacy, toxicity, and quality of these natural products. Radix Dipsaci is commonly utilized in traditional Chinese medicine and is susceptible to contamination with mycotoxins. Here, we evaluated the mycotoxins, mycobiota and toxigenic fungi in the traditional medicine Radix Dipsaci. A total of 28 out of 63 Radix Dipsaci sample batches (44.4%) were found to contain mycotoxins. Among the positive samples, the contamination levels of AFB1, AFG1, AFG2, and OTA in the positive samples ranged from 0.52 to 32.13 μg/kg, 5.14 to 20.05 μg/kg, 1.52 to 2.33 μg/kg, and 1.81 to 19.43 μg/kg respectively, while the concentrations of ZEN and T-2 were found to range from 2.85 to 6.33 μg/kg and from 2.03 to 2.53 μg/kg, respectively. More than 60% of the contaminated samples were combined with multiple mycotoxins. Fungal diversity and community were altered in the Radix Dipsaci contaminated with various mycotoxins. The abundance of Aspergillus and Fusarium increased in the Radix Dipsaci contaminated with aflatoxins (AFs) and ZEN. A total of 95 strains of potentially toxigenic fungi were isolated from the Radix Dipsaci samples contaminated with mycotoxins, predominantly comprising Aspergillus (73.7%), Fusarium (20.0%), and Penicillium (6.3%). Through morphological identification, molecular identification, mycotoxin synthase gene identification and toxin production verification, we confirmed that AFB1 and AFG1 primarily derive from Aspergillus flavus, OTA primarily derives from Aspergillus westerdijkiae, ZEN primarily derives from Fusarium oxysporum, and T-2 primarily derives from Fusarium graminearum in Radix Dipsaci. These data can facilitate our comprehension of prevalent toxigenic fungal species and contamination levels in Chinese herbal medicine, thereby aiding the establishment of effective strategies for prevention, control, and degradation to mitigate the presence of fungi and mycotoxins in Chinese herbal medicine.
Collapse
Affiliation(s)
- Min Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, Beijng, China
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Majidi M, Mirjalili MH, Farzaneh M, Rezadoost H. Fungal endophytes Fusarium solani SGGF14 and Alternaria tenuissima SGGF21 enhance the glycyrrhizin production by modulating its key biosynthetic genes in licorice (Glycyrrhiza glabra L.). J Appl Microbiol 2024; 135:lxae199. [PMID: 39182158 DOI: 10.1093/jambio/lxae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
AIMS To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.
Collapse
Affiliation(s)
- Mehdi Majidi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
5
|
Huang Y, Fu L, Gan Y, Qi G, Hao L, Xin T, Xu W, Song J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int J Mol Sci 2024; 25:8172. [PMID: 39125741 PMCID: PMC11312406 DOI: 10.3390/ijms25158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.
Collapse
Affiliation(s)
- Yuanhao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lianguo Fu
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
6
|
Wang XC, Zhang ZK, Zhuang WY. Species Diversity of Penicillium in Southwest China with Discovery of Forty-Three New Species. J Fungi (Basel) 2023; 9:1150. [PMID: 38132751 PMCID: PMC10744262 DOI: 10.3390/jof9121150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
7
|
Orole OO, Adejumo TO, Link T, Voegele RT. Molecular identification of endophytes from maize roots and their biocontrol potential against toxigenic fungi of Nigerian maize. Sci Prog 2023; 106:368504231186514. [PMID: 37431272 PMCID: PMC10364792 DOI: 10.1177/00368504231186514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Plants benefit from plant-associated microorganisms, of which endophytes are of particular interest as they are transmitted from generation to generation. This study characterises endophytes from maize roots and determines their biocontrol potential against toxigenic fungi in Nigerian maize. Maize roots were collected from farms in Lafia, and stored grain samples were collected from the six Northern States of Nigeria, from which endophytes and toxigenic fungal strains were isolated. Molecular identification employing 16SrRNA/internal transcribed spacer (ITS) sequences for isolated fungal endophytes was carried out, and mycotoxins produced by fungi were determined by high-performance liquid chromatography analysis. Biocontrol activity of the endophytes was determined using the dual culture confrontation test. Aspergillus and Fusarium genera were the prevalent isolated fungal species. Eight fungal endophytes were identified of which Trichoderma harzianum, Dichotomopilus erectus and Burkholderia spp. were the isolates with biocontrol activities, while 12 Aspergillus spp. were found to produce varying amounts of ochratoxin A and aflatoxin B1, respectively. T. harzianum showed the best inhibition (74%), followed by D. erectus (50%) and Burkholderia spp. (48%). T. harzianum showed poor inhibition of Aspergillus flavus (B7) at 30%. However, results from the Pakdaman Biological Control Index showed that T. harzianum has the best antifungal biocontrol activity of the three endophytes. The study concludes that antifungal biocontrol agents can be sourced from endophytes to obtain indigenous control activities that can check mycotoxin contamination of food and livestock feed, as well as elucidate possible metabolites for agricultural and industrial applications, which will help improve plant performance, increase crop yield and sustainability.
Collapse
Affiliation(s)
| | | | - Tobias Link
- Universität Hohenheim, Institut für Phytomedizin, Stuttgart, Germany
| | | |
Collapse
|
8
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
9
|
Elamin A, Enomoto H, Watanabe M, Sakuda S. The Mechanism of Ochratoxin Contamination of Artificially Inoculated Licorice Roots. Toxins (Basel) 2023; 15:219. [PMID: 36977110 PMCID: PMC10058647 DOI: 10.3390/toxins15030219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Ochratoxin (OT) contamination of medicinal herbs is a serious threat to human health. This study was performed to investigate the mechanism of OT contamination of licorice (Glycyrrhiza sp.) root. Licorice root samples were cut into eight parts, which were placed separately on sucrose-free Czapek Dox agar medium, inoculated with the spores of ochratoxigenic Aspergillus westerdijkiae. After incubation for 10 and 20 days, the OT contents of the samples were determined by high-performance liquid chromatography, and microtome sections prepared from the samples were analyzed by desorption electrospray ionization tandem mass spectrometry, to visualize OT localization. The same sections were further examined by light microscopy and scanning electron microscopy, to investigate the path of fungal mycelial penetration of the inner roots. OT concentrations tended to increase from the upper- to the middle-root parts. OTs were located in cut areas and areas of cork layer damage; they were not present in the undamaged cork layer, indicating that the structure of this layer prevents OT contamination of the licorice root.
Collapse
Affiliation(s)
- Abdelrahman Elamin
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Maiko Watanabe
- Division of Microbiology, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| |
Collapse
|
10
|
Yu J, Zhang W, Dao Y, Yang M, Pang X. Characterization of the Fungal Community in Fritillariae Cirrhosae Bulbus through DNA Metabarcoding. J Fungi (Basel) 2022; 8:jof8080876. [PMID: 36012863 PMCID: PMC9410024 DOI: 10.3390/jof8080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Fritillariae Cirrhosae Bulbus (FCB) is a well-known and precious traditional Chinese medicine with a medicinal history spanning thousands of years. In recent years, it has been reported that fungal and mycotoxin contamination influenced the safety and quality of FCB. It is essential to systematically study the fungal community for the early warning of fungal and mycotoxin contamination in this herb. A total of 15 FCB samples were collected from five provinces in China, and the fungal communities in the FCB samples were analyzed via amplifying the internal transcribed spacer 2 region through the Illumina Miseq PE300 platform. Furthermore, we compared the differences in fungal community in five groups based on collection areas. Results showed that Ascomycota (41.58-99.66%) and Mucoromycota (0-57.42%) were dominant at the phylum level. Eurotiomycetes (8.49-63.93%), Eurotiales (8.49-63.53%), and Aspergillaceae (8.49-63.51%) were the most abundant at the class, order, and family levels. Aspergillus (8.49-63.41%), Rhizopus (0-57.42%), Fusarium (0-22.81%), Cladosporium (0.16-9.14%), and Alternaria (0.06-17.95%) were the main genera in FCB samples. A total of 34 fungal taxa were identified at the species level, including five potentially toxigenic fungi namely Penicillium brevicompactum, P. citrinum, P. oxalicum, Trichothecium roseum, and Aspergillus restrictus. The differences in fungal community between the five groups were observed. Our findings provide references for the safe utilization and quality improvement of FCB.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjuan Zhang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yujie Dao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence:
| |
Collapse
|
11
|
Vlachou M, Pexara A, Solomakos N, Govaris A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins (Basel) 2022; 14:67. [PMID: 35202095 PMCID: PMC8876995 DOI: 10.3390/toxins14020067] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced after the growth of several Aspergillus and Penicillium spp. in feeds or foods. OTA has been proved to possess nephrotoxic, hepatotoxic, teratogenic, neurotoxic, genotoxic, carcinogenic and immunotoxic effects in animals and humans. OTA has been classified as possibly carcinogenic to humans (Group 2B) by the IARC in 2016. OTA can be mainly found in animals as a result of indirect transmission from naturally contaminated feed. OTA found in feed can also contaminate pigs and produced pork products. Additionally, the presence of OTA in pork meat products could be derived from the direct growth of OTA-producing fungi or the addition of contaminated materials such as contaminated spices. Studies accomplished in various countries have revealed that pork meat and pork meat products are important sources of chronic dietary exposure to OTA in humans. Various levels of OTA have been found in pork meat from slaughtered pigs in many countries, while OTA levels were particularly high in the blood serum and kidneys of pigs. Pork products made from pig blood or organs such as the kidney or liver have been often found to becontaminated with OTA. The European Union (EU) has established maximum levels (ML) for OTA in a variety of foods since 2006, but not for meat or pork products. However, the establishement of an ML for OTA in pork meat and meat by-products is necessary to protect human health.
Collapse
Affiliation(s)
| | - Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.V.); (N.S.); (A.G.)
| | | | | |
Collapse
|
12
|
Liang LJ, Jeewon R, Dhandevi P, Durairajan SSK, Li H, Lin FC, Wang HK. A Novel Species of Penicillium With Inhibitory Effects Against Pyricularia oryzae and Fungal Pathogens Inducing Citrus Diseases. Front Cell Infect Microbiol 2021; 10:604504. [PMID: 33680979 PMCID: PMC7927426 DOI: 10.3389/fcimb.2020.604504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A novel species of Penicillium, proposed as P. linzhiense sp.nov was isolated from soil collected in Linzhi Town, Linzhi County, Tibet Autonomous Region, China. DNA sequence analyses from eight different gene regions indicate that the isolate represents a novel species and most closely related to P. janczewskii. The phylogenetic analysis based on a concatenated dataset of three genes, ITS, CaM, and BenA, also confirmed the placement of the novel species within the Canescentia section of the genus Penicillium. Differences in morphology among similar species are detailed and single gene phylogenies based on ITS, CaM and BenA genes as well as a multi-loci gene phylogeny are presented. Cultural studies were performed to study inhibitory activities on plant pathogens. The results reveal a notable antifungal activity against Pyricularia oryzae causing rice blast with an inhibition rate up to 77%, while for other three citrus pathogens, Diaporthe citri, Phyllosticta citrichinaensis, and Colletotrichum gloeosporioides, inhibition rate was 40, 50, and 55% respectively. No noticeable effects were observed for Fusarium graminearum, Botryosphaeria kuwatsukai, and Rhizoctonia solani. Interestingly, unlike other reported members of Canescentia, P. linzhiense showed no antagonistic effect on root rotting fungi. The new taxon isolated here has the potential to be used as a biocontrol agent especially for economically important phytopathogens or emerging pathogens on diseases occurring on citrus or rice.
Collapse
Affiliation(s)
- Li-Juan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Pem Dhandevi
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Siva Sundara Kumar Durairajan
- Division of Mycobiology & Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Hongye Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong-Kai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
14
|
|
15
|
Su C, Hu Y, Gao D, Luo YI, Chen AJ, Jiao X, Gao W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J Food Prot 2018; 81:754-761. [PMID: 29620485 DOI: 10.4315/0362-028x.jfp-17-405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herbs derived from roots, leaves, flowers, or fruits of plants are unavoidably contaminated with fungi and mycotoxins during growth, harvest, and storage, thereby posing a health threat to humans. Especially, root herbs (RHs) are more easily contaminated with fungi and mycotoxins because the roots are in direct contact with the soil. Here, we investigated the occurrence of fungi, aflatoxins (AFs), and ochratoxin A (OTA) in eight RHs that are used as medicines, beverages, dietary supplements, and functional foods in China and other countries. Morphological observation and MultiGeneBlast (β-tubulin and calmodulin) were used to identify the potentially toxigenic fungi. Of the 48 samples tested, all were contaminated by fungi, and 1,844 isolates belonging to 25 genera were detected. The genera Aspergillus and Penicillium, which contain potentially toxigenic fungal species, represented a frequency of 10 and 25%, respectively. Thirty-three isolates of Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, and Penicillium polonicum were arbitrarily selected for analysis of their toxigenic potential. Five of 13 isolates of A. flavus and 1 isolate of A. parasiticus produced AFs, whereas OTA production was not detected for any of the isolates of A. niger and P. polonicum. The occurrence of AFs and OTA in the 48 samples of eight RHs was tested by ultraperformance liquid chromatography-tandem mass spectrometry; 37.50% of samples from six RHs were contaminated with AFs and 16.67% of samples from four RHs were contaminated with OTA. Seven (14.58%) and four (8.33%) samples of ginseng, polygala, and liquorice exceeded the permissible limits of aflatoxin B1 and AFs, respectively. Because ginseng, polygala, and liquorice are widely used as herbs, dietary supplements, and functional foods, the high frequency of AF contamination of these herbs indicated by our current study warrant attention to raise public awareness.
Collapse
Affiliation(s)
- Chunyan Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Yongjian Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Y I Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Xiaolin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
16
|
Perrone G, Logrieco AF, Frisvad JC. Comments on "Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins 2016, 8, 333"-In Reporting Ochratoxin A Production from Strains of Aspergillus, Penicillium and Talaromyces. Toxins (Basel) 2017; 9:E65. [PMID: 28216564 PMCID: PMC5331444 DOI: 10.3390/toxins9020065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and chemical data. We propose a list of criteria that need to be met before an unexpected mycotoxin producer is reported. There have only been convincing data on ochratoxin A production for Penicillium verrucosum, P. nordicum, P. thymicola, all from Penicillium series Verrucosa, and from species in three sections of Aspergillus: section Circumdati, section Nigri and section Flavi.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Food Science and Production, National Reseach Council (CNR), I-70126 Bari, Italy.
| | - Antonio F Logrieco
- Institute of Food Science and Production, National Reseach Council (CNR), I-70126 Bari, Italy.
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Abstract
Penicillium are very diverse and cosmopolite fungi, about 350 species are recognized within this genus. It is subdivided in four subgenera Aspergilloides, Penicillium, Furcatum, and Biverticillium; recently the first three has been included in Penicillium genus, and Biverticillium under Talaromyces. They occur worldwide and play important roles as decomposers of organic materials, cause destructive rots in the food industry where produces a wide range of mycotoxins; they are considered enzyme factories, and common indoor air irritants. In terms of human health are rarely associated as human pathogen because they hardly growth at 37°, while the main risk is related to ingestion of food contaminated by mycotoxins produced by several species of Penicillium. Various mycotoxins can occur in foods and feeds contaminated by Penicillium species, the most important are ochratoxin A and patulin; for which regulation are imposed in a number of countries, and at a less extent cyclopiazonic acid. In this chapter we summarize the main aspect of the morphology, ecology and toxigenicity of Penicillium foodborne mycotoxigenic species which belong mainly in subgenus Penicillium sections Brevicompacta, Chrysogena, Fasciculata, Penicillium, and Roquefortorum.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, Bari, 70126, Italy.
| | - Antonia Susca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, Bari, 70126, Italy
| |
Collapse
|
18
|
Comments on "Mycobiota and Mycotoxins in Traditional Medicinal Seeds from China. Toxins 2015, 7, 3858-3875"- in Attributing Ochratoxin A Biosynthesis Within the Genus Penicillium Occurring on Natural Agricultural Produce. Toxins (Basel) 2016; 8:toxins8060166. [PMID: 27258309 PMCID: PMC4926133 DOI: 10.3390/toxins8060166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022] Open
Abstract
The unusual attribution of trace amounts of ochratoxin A in some Chinese food commodities to Penicillium polonicum is questioned by European experience in searches for ochratoxinogenic food-spoilage Penicillia, where mistaken attribution is now known to have been due to cryptic Penicillium verrucosum contamination. Consequently, selection of single-spore isolates is recommended as pre-requisite for attributing mycotoxin biosynthetic potential to fungi.
Collapse
|
19
|
Gao W. Response to Peter Mantle. Comments on “Mycobiota and Mycotoxins in Traditional Medicinal Seeds from China. Toxins 2015, 7, 3858-3875”—Rigour in Attributing Ochratoxin A Biosynthesis within the Genus Penicillium Occurring on Natural Agricultural Produce. Toxins (Basel) 2016; 8:toxins8060167. [PMID: 27258310 PMCID: PMC4926134 DOI: 10.3390/toxins8060167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Affiliation(s)
- Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
20
|
Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins (Basel) 2016; 8:E83. [PMID: 27007394 PMCID: PMC4810228 DOI: 10.3390/toxins8030083] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Liuqing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Qi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Jonathan Nimal Selvaraj
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| |
Collapse
|
21
|
Chen AJ, Jiao X, Hu Y, Lu X, Gao W. Mycobiota and Mycotoxins in Traditional Medicinal Seeds from China. Toxins (Basel) 2015; 7:3858-75. [PMID: 26404373 PMCID: PMC4626707 DOI: 10.3390/toxins7103858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
The multi-mycotoxin occurrence for internal and superficial fungi contamination were comprehensively assessed in medicinal seeds used as food or beverage. Based on a polyphasic approach using morphological characters, β-tubulin and ITS gene blast, a total of 27 species belonging to 12 genera were identified from surface-sterilized seeds. Chaetomium globosporum was most predominant (23%), followed by Microascus trigonosporus (12%) and Alternaria alternata (9%). With respect to superficial mycobiota, thirty-four species belonging to 17 genera were detected. Aspergillus niger and Penicillium polonicum were predominant (12% and 15%, respectively). Medicinal seed samples and potential toxigenic fungi were tested for ochratoxin A (OTA) and aflatoxins (AFB1, AFB2, AFG1, AFG2) using UPLC-MS/MS. Platycladi seeds were contaminated with AFB1 (52.0 µg/kg) and tangerine seed was contaminated with OTA (92.3 µg/kg). Subsequent analysis indicated that one A. flavus strain isolated from platycladi seed was able to synthesize AFB1 (102.0 µg/kg) and AFB2 (15.3 µg/kg). Two P. polonicum strains isolated from tangerine and lychee seeds were able to synthesize OTA (4.1 µg/kg and 14.8 µg/kg, respectively). These results identify potential sources of OTA and aflatoxins in medicinal seeds and allude to the need to establish permitted limits for these mycotoxins in these seeds that are commonly consumed by humans.
Collapse
Affiliation(s)
- Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaolin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yongjian Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xiaohong Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
22
|
Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014; 78:343-71. [PMID: 25505353 PMCID: PMC4261876 DOI: 10.1016/j.simyco.2014.09.001] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.
Collapse
Affiliation(s)
- C M Visagie
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - S-B Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea
| | - C H W Klaassen
- Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands
| | - G Perrone
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - K A Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - J Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary
| | - T Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| |
Collapse
|