1
|
Gaur AV, Agarwal R. Risperidone induced alterations in feeding and locomotion behavior of Caenorhabditis elegans. Curr Res Toxicol 2021; 2:367-374. [PMID: 34806037 PMCID: PMC8585583 DOI: 10.1016/j.crtox.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022] Open
Abstract
Antipsychotic drugs (APDs) are prescribed for the treatment of psychiatric illness. However, these drugs can also contribute to several developmental and behavioral disorders. Contemporary studies to evaluate the toxic effects of numerous atypical antipsychotics are reported to cause behavioral alteration at variable doses in mammals and nematodes. Risperidone, the second most prescribed drug in India, requires more exploration of its adverse effects on humans. Here, we explore effects on feeding behavior and locomotion patterns due to risperidone exposure in C. elegans model. The study targets to work out the toxic effects of risperidone exposure on feeding and locomotion behavior in addition to the expected pharmacological effects. N2 wild type strain was exposed in liquid culture assay for 2, 4, 6, 8, 10, and 12 hours with fixed 50 µM concentration. Feeding behavior was depleted due to inhibition in pharyngeal pumping varying from 11.05% - 45.67% in a time-dependent manner. Results of locomotion assay also show time-varying increase in reversals (4.9%-34.03%) and omega bends (26.23%-62.17%) with reduction in turn counts (29.07%- 42.2%) and peristaltic speed (31.38%-42.22%) amongst exposed groups as to control. The present work shows behavioral alterations due to risperidone exposure (50 µM) in C. elegans is in a time-dependent manner. The study concludes that risperidone exposure in C. elegans produces toxic effects with time, possibly caused by antagonizing other receptors apart from serotonin (5-H2T) and dopamine (D2) adding to its expected pharmacological effects.
Collapse
Key Words
- 5-H2T
- 5-HT, 5-hydroxytryptamine
- ADF, Amphid Neuron
- APDs, Antipsychotic drugs
- Antipsychotic drugs
- Behavioral alteration
- C, Control Group
- C-0h, Control Group at 0 h
- C-10h, Control Group at 10 h
- C-12h, Control Group at 12 h. E-2h, Exposure Group at 2 h
- C-2h, Control Group at 2 h
- C-4h, Control Group at 4 h
- C-6h, Control Group at 6 h
- C-8h, Control Group at 8 h
- C. elegans
- C. elegans, Caenorhabditis elegans
- D2
- D2, Dopamine Receptor 2
- E, Exposed Group
- E-10h, Exposure Group at ten
- E-12h, Exposure Group at 12 h
- E-4h, Exposure Group at 4 h
- E-6h, Exposure Group at 6 h
- E-8h, Exposure Group at 8 h
- E. coli, Escherichia coli BOD-Biochemical Oxygen Demand
- GPR, G coupled Protein Receptor
- HSN, Hermaphrodite Specific Neuron
- Min., Minutes
- N2 Wild type
- NSM, Neurosecretory Motor Neuron
- Peristaltic speed
- Pharyngeal pumping
- Reversals
- Risperidone
- SD, Standard Deviation
- SDA, Serotonin Dopamine Antagonist
- Turn counts
- omega bends
Collapse
Affiliation(s)
- Aaditya Vikram Gaur
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar 382007, Gujarat, India
- Forensic Science Laboratory, Kirumampakkam, Puducherry 607402, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
2
|
Olivares E, Izquierdo EJ, Beer RD. A Neuromechanical Model of Multiple Network Rhythmic Pattern Generators for Forward Locomotion in C. elegans. Front Comput Neurosci 2021; 15:572339. [PMID: 33679357 PMCID: PMC7930337 DOI: 10.3389/fncom.2021.572339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
Multiple mechanisms contribute to the generation, propagation, and coordination of the rhythmic patterns necessary for locomotion in Caenorhabditis elegans. Current experiments have focused on two possibilities: pacemaker neurons and stretch-receptor feedback. Here, we focus on whether it is possible that a chain of multiple network rhythmic pattern generators in the ventral nerve cord also contribute to locomotion. We use a simulation model to search for parameters of the anatomically constrained ventral nerve cord circuit that, when embodied and situated, can drive forward locomotion on agar, in the absence of pacemaker neurons or stretch-receptor feedback. Systematic exploration of the space of possible solutions reveals that there are multiple configurations that result in locomotion that is consistent with certain aspects of the kinematics of worm locomotion on agar. Analysis of the best solutions reveals that gap junctions between different classes of motorneurons in the ventral nerve cord can play key roles in coordinating the multiple rhythmic pattern generators.
Collapse
Affiliation(s)
- Erick Olivares
- Cognitive Science Program, Indiana University Bloomington, Bloomington, IN, United States
| | - Eduardo J. Izquierdo
- Cognitive Science Program, Indiana University Bloomington, Bloomington, IN, United States
- Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Randall D. Beer
- Cognitive Science Program, Indiana University Bloomington, Bloomington, IN, United States
- Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
3
|
Helms SJ, Rozemuller WM, Costa AC, Avery L, Stephens GJ, Shimizu TS. Modelling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behaviour across species. J R Soc Interface 2019; 16:20190174. [PMID: 31455164 DOI: 10.1098/rsif.2019.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A quantitative understanding of organism-level behaviour requires predictive models that can capture the richness of behavioural phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here, we investigate the motile behaviour of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioural repertoire by measuring motile trajectories of the canonical laboratory strain Caenorhabditis elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over time scales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioural control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting 'bet-hedging' strategies for foraging.
Collapse
Affiliation(s)
| | | | - Antonio Carlos Costa
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Leon Avery
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Greg J Stephens
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands.,Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | | |
Collapse
|
4
|
Factors that influence magnetic orientation in Caenorhabditis elegans. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:343-352. [PMID: 31463530 DOI: 10.1007/s00359-019-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Magnetoreceptive animals orient to the earth's magnetic field at angles that change depending on temporal, spatial, and environmental factors such as season, climate, and position within the geomagnetic field. How magnetic migratory preference changes in response to internal or external stimuli is not understood. We previously found that Caenorhabditis elegans orients to magnetic fields favoring migrations in one of two opposite directions. Here we present new data from our labs together with replication by an independent lab to test how temporal, spatial, and environmental factors influence the unique spatiotemporal trajectory that worms make during magnetotaxis. We found that worms gradually change their average preferred angle of orientation by ~ 180° to the magnetic field during the course of a 90-min assay. Moreover, we found that the wild-type N2 strain prefers to orient towards the left side of a north-facing up, disc-shaped magnet. Lastly, similar to some other behaviors in C. elegans, we found that magnetic orientation may be more robust in dry conditions (< 50% RH). Our findings help explain why C. elegans accumulates with distinct patterns during different periods and in differently shaped magnetic fields. These results provide a tractable system to investigate the behavioral genetic basis of state-dependent magnetic orientation.
Collapse
|
5
|
Winter PB, Brielmann RM, Timkovich NP, Navarro HT, Teixeira-Castro A, Morimoto RI, Amaral LAN. A network approach to discerning the identities of C. elegans in a free moving population. Sci Rep 2016; 6:34859. [PMID: 27725712 PMCID: PMC5057085 DOI: 10.1038/srep34859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
The study of C. elegans has led to ground-breaking discoveries in gene-function, neuronal circuits, and physiological responses. Subtle behavioral phenotypes, however, are often difficult to measure reproducibly. We have developed an experimental and computational infrastructure to simultaneously record and analyze the physical characteristics, movement, and social behaviors of dozens of interacting free-moving nematodes. Our algorithm implements a directed acyclic network that reconstructs the complex behavioral trajectories generated by individual C. elegans in a free moving population by chaining hundreds to thousands of short tracks into long contiguous trails. This technique allows for the high-throughput quantification of behavioral characteristics that require long-term observation of individual animals. The graphical interface we developed will enable researchers to uncover, in a reproducible manner, subtle time-dependent behavioral phenotypes that will allow dissection of the molecular mechanisms that give rise to organism-level behavior.
Collapse
Affiliation(s)
- Peter B Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA
| | - Nicholas P Timkovich
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Helio T Navarro
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Andreia Teixeira-Castro
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, IL, USA
| | - Luis A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.,Northwestern Institute on Complex Systems and Data Science, Northwestern University, Evanston, IL, USA.,Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Hums I, Riedl J, Mende F, Kato S, Kaplan HS, Latham R, Sonntag M, Traunmüller L, Zimmer M. Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans. eLife 2016; 5. [PMID: 27222228 PMCID: PMC4880447 DOI: 10.7554/elife.14116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies. DOI:http://dx.doi.org/10.7554/eLife.14116.001 Animals navigate through their environment using different strategies according to their current needs. For example, when the goal is to travel long distances, they move quickly and in an efficient way by employing regular, repetitive movements. However, when the aim is to explore the nearby area – to search for food, for example – animals move slowly and make more flexible movements. These different types of movement mostly use the same groups of muscles, and so animals must be able to alter how they control their muscles to yield these different strategies. These movement strategies have been observed in many animal species, from worms to grazing cows, and researchers have mostly classified them into distinct behavioral states that the animals switch between. To date, the patterns of movements that underlie these strategies have not been described in detail. The wavelike movement of the roundworm Caenorhabditis elegans has the advantage of being relatively easy to measure. By analyzing precise recordings of how the worms change posture as they move, Hums et al. now show that two main patterns of motion underlie worm movement. Regular whole-body waves (undulations) efficiently drive long-distance travel, while more complex turning motions allow the animals to flexibly change direction and so explore the local environment. Furthermore, the worms can fine-tune their movement strategy by gradually transitioning between the two patterns. This finding is opposed to the standard view, where animals switch between distinct behavioral states. Hums et al. then studied how neuronal regulation in the C. elegans nervous system enables the worms to transition between the different movement strategies. In these experiments, neurons were manipulated and their activity was recorded. The results suggest that two classes of so called interneurons enable the worms to fine-tune their movements. Each class of these interneurons produces a signaling molecule (or neuropeptide) that counteracts the activity of the other signal; together both neuropeptides regulate the patterns of movements. Further work is now needed to identify and investigate the downstream neurons that work together to represent the different patterns of movements in the roundworm. Future studies could also analyze whether other animals – such as swimming animals and limbed animals – use similar principles to change between distinct forms of movement and thus enact a range of behavioral strategies. DOI:http://dx.doi.org/10.7554/eLife.14116.002
Collapse
Affiliation(s)
- Ingrid Hums
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Julia Riedl
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Fanny Mende
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Saul Kato
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Harris S Kaplan
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Richard Latham
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Michael Sonntag
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Lisa Traunmüller
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology, Vienna Biocenter VBC, Vienna, Austria
| |
Collapse
|
7
|
Roberts WM, Augustine SB, Lawton KJ, Lindsay TH, Thiele TR, Izquierdo EJ, Faumont S, Lindsay RA, Britton MC, Pokala N, Bargmann CI, Lockery SR. A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. eLife 2016; 5:12572. [PMID: 26824391 PMCID: PMC4798983 DOI: 10.7554/elife.12572] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Random search is a behavioral strategy used by organisms from bacteria to humans to locate food that is randomly distributed and undetectable at a distance. We investigated this behavior in the nematode Caenorhabditis elegans, an organism with a small, well-described nervous system. Here we formulate a mathematical model of random search abstracted from the C. elegans connectome and fit to a large-scale kinematic analysis of C. elegans behavior at submicron resolution. The model predicts behavioral effects of neuronal ablations and genetic perturbations, as well as unexpected aspects of wild type behavior. The predictive success of the model indicates that random search in C. elegans can be understood in terms of a neuronal flip-flop circuit involving reciprocal inhibition between two populations of stochastic neurons. Our findings establish a unified theoretical framework for understanding C. elegans locomotion and a testable neuronal model of random search that can be applied to other organisms. An animal’s ability to rapidly and efficiently locate new sources of food in its environment can mean the difference between life and death. As a result, animals have evolved foraging strategies that are adapted to the distribution and detectability of food sources. Organisms ranging from bacteria to humans use one such strategy, called random search, to locate food that cannot be detected at a distance and that is randomly distributed in their surroundings. The biological mechanisms that underpin random search are relatively well understood in single-cell organisms such as bacteria, but this information tells us little about the mechanisms that are used by animals, which use their nervous system to control their foraging behavior. Roberts et al. have now investigated the biological basis for random search behavior in a tiny roundworm called Caenorhabditis elegans. This worm forages for pockets of bacteria in decaying plant matter and has a simple and well-understood nervous system. Roberts et al. used information on how the cells in this worm’s nervous system connect together into so-called “neural circuits” to generate a mathematical model of random searching. The model revealed that the worm’s neural circuitry for random searching can be understood in terms of two groups of neuron-like components that switch randomly between “ON” and “OFF” states. While one group promotes forward movement, the other promotes backward movement, which is associated with a change in search direction. These two groups inhibit each other so that only one group usually is active at a given time. By adjusting this model to reproduce the behavioral records of real worms searching for food, Roberts et al. could predict the key neuronal connections involved. These predictions were then confirmed by taking electrical recordings from neurons. The model could also account for the unexpected behavioral effects that are seen when a neuron in one of these groups was destroyed or altered by a genetic mutation. These findings thus reveal a biological mechanism for random search behavior in worms that might operate in other animals as well. The findings might also provide future insight into the neural circuits involved in sleep and wakefulness in mammals, which is organized in a similar way.
Collapse
Affiliation(s)
- William M Roberts
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Steven B Augustine
- School of Nursing, University of Pennsylvania, Philadelphia, United States
| | | | - Theodore H Lindsay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto, Toronto, Canada
| | | | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Rebecca A Lindsay
- Department of Ophthalmology, The Vision Center, Children's Hospital Los Angeles, Los Angeles, United States
| | | | - Navin Pokala
- Department of Life Sciences, New York Institute of Technology, Old Westbury, United States
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, United States
| |
Collapse
|
8
|
Moy K, Li W, Tran HP, Simonis V, Story E, Brandon C, Furst J, Raicu D, Kim H. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. PLoS One 2015; 10:e0145870. [PMID: 26713869 PMCID: PMC4699910 DOI: 10.1371/journal.pone.0145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition.
Collapse
Affiliation(s)
- Kyle Moy
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Weiyu Li
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Huu Phuoc Tran
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Valerie Simonis
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Evan Story
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Christopher Brandon
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
| | - Jacob Furst
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Daniela Raicu
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| |
Collapse
|
9
|
Dissection of C. elegans behavioral genetics in 3-D environments. Sci Rep 2015; 5:9564. [PMID: 25955271 PMCID: PMC4424945 DOI: 10.1038/srep09564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/27/2015] [Indexed: 11/08/2022] Open
Abstract
The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.
Collapse
|
10
|
Hamakawa M, Uozumi T, Ueda N, Iino Y, Hirotsu T. A role for Ras in inhibiting circular foraging behavior as revealed by a new method for time and cell-specific RNAi. BMC Biol 2015; 13:6. [PMID: 25603799 PMCID: PMC4321700 DOI: 10.1186/s12915-015-0114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The nematode worm Caenorhabditis elegans, in which loss-of-function mutants and RNA interference (RNAi) models are available, is a model organism useful for analyzing effects of genes on various life phenomena, including behavior. In particular, RNAi is a powerful tool that enables time- or cell-specific knockdown via heat shock-inducible RNAi or cell-specific RNAi. However, conventional RNAi is insufficient for investigating pleiotropic genes with various sites of action and life stage-dependent functions. RESULTS Here, we investigated the Ras gene for its role in exploratory behavior in C. elegans. We found that, under poor environmental conditions, mutations in the Ras-MAPK signaling pathway lead to circular locomotion instead of normal exploratory foraging. Spontaneous foraging is regulated by a neural circuit composed of three classes of neurons: IL1, OLQ, and RMD, and we found that Ras functions in this neural circuit to modulate the direction of locomotion. We further observed that Ras plays an essential role in the regulation of GLR-1 glutamate receptor localization in RMD neurons. To investigate the temporal- and cell-specific profiles of the functions of Ras, we developed a new RNAi method that enables simultaneous time- and cell-specific knockdown. In this method, one RNA strand is expressed by a cell-specific promoter and the other by a heat shock promoter, resulting in only expression of double-stranded RNA in the target cell when heat shock is induced. This technique revealed that control of GLR-1 localization in RMD neurons requires Ras at the adult stage. Further, we demonstrated the application of this method to other genes. CONCLUSIONS We have established a new RNAi method that performs simultaneous time- and cell-specific knockdown and have applied this to reveal temporal profiles of the Ras-MAPK pathway in the control of exploratory behavior under poor environmental conditions.
Collapse
Affiliation(s)
- Masayuki Hamakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Takayuki Uozumi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Naoko Ueda
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Hirotsu
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan. .,Division of Applied Medical Sensing, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
11
|
Salvador LCM, Bartumeus F, Levin SA, Ryu WS. Mechanistic analysis of the search behaviour of Caenorhabditis elegans. J R Soc Interface 2014; 11:20131092. [PMID: 24430127 PMCID: PMC3899880 DOI: 10.1098/rsif.2013.1092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/16/2013] [Indexed: 11/12/2022] Open
Abstract
A central question in movement research is how animals use information and movement to promote encounter success. Current random search theory identifies reorientation patterns as key to the compromise between optimizing encounters for both nearby and faraway targets, but how the balance between intrinsic motor programmes and previous environmental experience determines the occurrence of these reorientation behaviours remains unknown. We used high-resolution tracking and imaging data to describe the complete motor behaviour of Caenorhabditis elegans when placed in a novel environment (one in which food is absent). Movement in C. elegans is structured around different reorientation behaviours, and we measured how these contributed to changing search strategies as worms became familiar with their new environment. This behavioural transition shows that different reorientation behaviours are governed by two processes: (i) an environmentally informed 'extrinsic' strategy that is influenced by recent experience and that controls for area-restricted search behaviour, and (ii) a time-independent, 'intrinsic' strategy that reduces spatial oversampling and improves random encounter success. Our results show how movement strategies arise from a balance between intrinsic and extrinsic mechanisms, that search behaviour in C. elegans is initially determined by expectations developed from previous environmental experiences, and which reorientation behaviours are modified as information is acquired from new environments.
Collapse
Affiliation(s)
- Liliana C. M. Salvador
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ 08542, USA
- ICREA-Movement Ecology Laboratory, Centre for Advanced Studies of Blanes (CEAB-CSIC), Cala St Francesc 14, Blanes 17300, Spain
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Frederic Bartumeus
- ICREA-Movement Ecology Laboratory, Centre for Advanced Studies of Blanes (CEAB-CSIC), Cala St Francesc 14, Blanes 17300, Spain
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ 08542, USA
| | - William S. Ryu
- Department of Physics and the Donnelly Centre, University of Toronto, 60 St George St., Toronto, CanadaM5S1A7
| |
Collapse
|