1
|
La Monica S, Vacondio F, Eltayeb K, Lodola A, Volta F, Viglioli M, Ferlenghi F, Galvani F, Galetti M, Bonelli M, Fumarola C, Cavazzoni A, Flammini L, Verzè M, Minari R, Petronini PG, Tiseo M, Mor M, Alfieri R. Targeting glucosylceramide synthase induces antiproliferative and proapoptotic effects in osimertinib-resistant NSCLC cell models. Sci Rep 2024; 14:6491. [PMID: 38499619 PMCID: PMC10948837 DOI: 10.1038/s41598-024-57028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Martina Viglioli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, 00078, Monte Porzio Catone, Rome, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Lisa Flammini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| |
Collapse
|
2
|
Bongartz H, Mehwald N, Seiß EA, Schumertl T, Naß N, Dittrich A. Dysregulated Gab1 signalling in triple negative breast cancer. Cell Commun Signal 2024; 22:161. [PMID: 38448989 PMCID: PMC10916281 DOI: 10.1186/s12964-024-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is especially aggressive and associated with high metastasis. The aetiology of TNBC is heterogeneous and characterised by multiple different mutations that amongst others cause constitutive and dysregulated MAPK and PI3K signalling. Additionally, in more than 50% of TNBC patients, the epidermal growth factor receptor (EGFR) is overexpressed and constitutively active. The multi-site docking protein Grb2-associated binder 1 (Gab1) is a central signalling hub that connects MAPK and PI3K signalling. METHODS Expression and activation of members of the Gab1/PI3K/MAPK signalling network were assessed in cells from different breast cancer subtypes. Influence of short- and long-term inhibition of EGFR, MAPK and PI3K on the activation of the Gab1/PI3K/MAPK signalling network as well as on cell viability, proliferation and migration was determined. Additionally, cellular localisation of Gab1 and Gab1 variants in naive cells and cells treated with the above-mentioned inhibitors was investigated. RESULTS We show that, activation of the Gab1/PI3K/MAPK signalling network is heterogeneous between different breast cancer subtypes. Gab1 phosphorylation and plasma membrane recruitment of Gab1 are dysregulated in the EGFRhigh TNBC cell line MDA-MB-468. While the Gab1/MAPK/PI3K signalling network follows canonical Gab1 signalling in naive MDA-MB-468 cells, Gab1 signalling is changed in cells that acquired resistance towards MAPK and PI3K inhibition. In resistant cells, Gab1 is not located at the plasma membrane despite strong activation of PI3K and MAPK. Furthermore, Gab1 tyrosine phosphorylation is uncoupled from plasma membrane recruitment. CONCLUSION Our study indicates that Gab1 signalling changes fundamentally during the acquisition of resistance to pharmacological inhibitors. Given the molecular heterogeneity between breast cancer subtypes, the detailed understanding of dysregulated and aberrant signalling is an absolute necessity in order to develop personalised therapies for patients with TNBC.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Elena A Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Tim Schumertl
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Norbert Naß
- Department of Pathology, Brandenburg Medical School Theodor Fontane, University Hospital Brandenburg / Havel, Hochstraße 29, Brandenburg, 14770, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
3
|
Cavazzoni A, Digiacomo G, Volta F, Alfieri R, Giovannetti E, Gnetti L, Bellini L, Galetti M, Fumarola C, Xu G, Bonelli M, La Monica S, Verzè M, Leonetti A, Eltayeb K, D'Agnelli S, Moron Dalla Tor L, Minari R, Petronini PG, Tiseo M. PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC). Lung Cancer 2024; 187:107438. [PMID: 38100954 DOI: 10.1016/j.lungcan.2023.107438] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Monoclonal antibodies (ICI) targeting the immune checkpoint PD-1/PD-L1 alone or in combination with chemotherapy have demonstrated relevant benefits and established new standards of care in first-line treatment for advanced non-oncogene addicted non-small cell lung cancer (NSCLC). However, a relevant percentage of NSCLC patients, even with high PD-L1 expression, did not respond to ICI, highlighting the presence of intracellular resistance mechanisms that could be dependent on high PD-L1 levels. The intracellular signaling induced by PD-L1 in tumor cells and their correlation with angiogenic signaling pathways are not yet fully elucidated. METHODS The intrinsic role of PD-L1 was initially checked in two PD-L1 overexpressing NSCLC cells by transcriptome profile and kinase array. The correlation of PD-L1 with VEGF, PECAM-1, and angiogenesis was evaluated in a cohort of advanced NSCLC patients. The secreted cytokines involved in tumor angiogenesis were assessed by Luminex assay and their effect on Huvec migration by a non-contact co-culture system. RESULTS PD-L1 overexpressing cells modulated pathways involved in tumor inflammation and JAK-STAT signaling. In NSCLC patients, PD-L1 expression was correlated with high tumor intra-vasculature. When challenged with PBMC, PD-L1 overexpressing cells produced higher levels of pro-angiogenic factors compared to parental cells, as a consequence of STAT signaling activation. This increased production of cytokines involved in tumor angiogenesis largely stimulated Huvec migration. Finally, the addition of the anti-antiangiogenic agent nintedanib significantly reduced the spread of Huvec cells when exposed to high levels of pro-angiogenic factors. CONCLUSIONS In this study, we reported that high PD-L1 modulates STAT signaling in the presence of PBMC and induces pro-angiogenic factor secretion. This could enforce the role of PD-L1 as a crucial regulator of the tumor microenvironment stimulating tumor progression, both as an inhibitor of T-cell activity and as a promoter of tumor angiogenesis.
Collapse
Affiliation(s)
- A Cavazzoni
- Department of Medicine and Surgery University of Parma, Parma, Italy.
| | - G Digiacomo
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - F Volta
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - R Alfieri
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - E Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - L Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - L Bellini
- Italian Society of Medicine and Scientific Divulgation, SIMED, Parma, Italy
| | - M Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, 00078 Rome, Italy
| | - C Fumarola
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - G Xu
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - M Bonelli
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S La Monica
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Verzè
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - K Eltayeb
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S D'Agnelli
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - R Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - P G Petronini
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Tiseo
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
4
|
Volta F, La Monica S, Leonetti A, Gnetti L, Bonelli M, Cavazzoni A, Fumarola C, Galetti M, Eltayeb K, Minari R, Petronini PG, Tiseo M, Alfieri R. Intrinsic Resistance to Osimertinib in EGFR Mutated NSCLC Cell Lines Induced by Alteration in Cell-Cycle Regulators. Target Oncol 2023; 18:953-964. [PMID: 37855989 PMCID: PMC10663255 DOI: 10.1007/s11523-023-01005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Cell-cycle regulators are mutated in approximately 40% of all cancer types and have already been linked to worse outcomes in non-small cell lung cancer adenocarcinomas treated with osimertinib. However, their exact role in osimertinib resistance has not been elucidated. OBJECTIVE In this study, we aimed to evaluate how the CDK4/6-Rb axis may affect the sensitivity to osimertinib. METHODS We genetically increased the level of CCND1 (Cyclin D1) and reduced the levels of CDKN2A (p16) in two different adenocarcinoma cell lines, PC9 and HCC827. We also retrospectively evaluated the outcome of patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer depending on their level of Cyclin D1 and p16. RESULTS The modified clones showed higher proliferative capacity, modifications in cell-cycle phases, and higher migratory capacity than the parental cells. Cyclin D1-overexpressing clones were highly resistant to acute osimertinib treatment. CDKN2A knockdown conferred intrinsic resistance as well, although a longer time was required for adaption to the drug. In both cases, the resistant phenotype was epidermal growth factor receptor independent and associated with a higher level of Rb phosphorylation, which was unaffected by osimertinib treatment. Blocking the phosphorylation of Rb using abemaciclib, a CDK4/6 inhibitor, exerted an additive effect with osimertinib, increasing sensitivity to this drug and reverting the intrinsic resistant phenotype. In a group of 32 patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer, assessed for Cyclin D1 and p16 expression, we found that the p16-deleted group presented a lower overall response rate compared with the control group. CONCLUSIONS We conclude that perturbation in cell-cycle regulators leads to intrinsic osimertinib resistance and worse patient outcomes.
Collapse
Affiliation(s)
- Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | | | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078, Rome, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
5
|
Digiacomo G, Fumarola C, La Monica S, Bonelli M, Cavazzoni A, Galetti M, Terenziani R, Eltayeb K, Volta F, Zoppi S, Bertolini P, Missale G, Alfieri R, Petronini PG. CDK4/6 inhibitors improve the anti-tumor efficacy of lenvatinib in hepatocarcinoma cells. Front Oncol 2022; 12:942341. [PMID: 35936714 PMCID: PMC9354684 DOI: 10.3389/fonc.2022.942341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer with a poor prognosis and limited treatment options. Considering that alterations of the CDK4/6-cyclin D-Rb pathway occur frequently in HCC, we tested the efficacy of two CDK4/6 inhibitors, abemaciclib and ribociclib, in combination with lenvatinib, a multi-kinase inhibitor approved as first-line therapy for advanced HCC, in a panel of HCC Rb-expressing cell lines. The simultaneous drug combinations showed a superior anti-proliferative activity as compared with single agents or sequential schedules of treatment, either in short or in long-term experiments. In addition, the simultaneous combination of abemaciclib with lenvatinib reduced 3D cell growth, and impaired colony formation and cell migration. Mechanistically, these growth-inhibitory effects were associated with a stronger down-regulation of c-myc protein expression. Depending on the HCC cell model, reduced activation of MAPK, mTORC1/p70S6K or src/FAK signaling was also observed. Abemaciclib combined with lenvatinib arrested the cells in the G1 cell cycle phase, induced p21 accumulation, and promoted a stronger increase of cellular senescence, associated with elevation of β-galactosidase activity and accumulation of ROS, as compared with single treatments. After drug withdrawal, the capacity of forming colonies was significantly impaired, suggesting that the anti-tumor efficacy of abemaciclib and lenvatinib combination was persistent. Our pre-clinical results demonstrate the effectiveness of the simultaneous combination of CDK4/6 inhibitors with lenvatinib in HCC cell models, suggesting that this combination may be worthy of further investigation as a therapeutic approach for the treatment of advanced HCC.
Collapse
Affiliation(s)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL - Italian Workers’ Compensation Authority, Rome, Italy
| | - Rita Terenziani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
6
|
LASP1 Induces Epithelial-Mesenchymal Transition in Lung Cancer through the TGF-β1/Smad/Snail Pathway. Can Respir J 2021; 2021:5277409. [PMID: 34912481 PMCID: PMC8668282 DOI: 10.1155/2021/5277409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background. LIM and SH3 domain protein 1 (LASP1), highly expressed in a variety of tumors, is considered as a novel tumor metastasis biomarker. However, it is unknown which signaling pathway works and how the signal transduces into cell nucleus to drive tumor progression by LASP1. The aim of this study is to explore the essential role of LASP1 in TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer cells. Methods. The gene and protein levels of LASP-1 were successfully silenced or overexpressed by LASP-1 shRNA lentivirus or pcDNA in TGF-β1-treated lung cancer cell lines, respectively. Then, the cells were developed EMT by TGF-β1. The cell abilities of invasion, migration, and proliferation were measured using Transwell invasion assay, wound healing assay, and MTT assay, respectively. Western blotting was used to observe the protein levels of EMT-associated molecules, including N-cadherin, vimentin, and E-cadherin, and the key molecules in the TGF-β1/Smad/Snail signaling pathway, including pSmad2 and Smad2, pSmad3 and Smad3, and Smad7 in cell lysates, as well as Snail1, pSmad2, and pSmad3 in the nucleus. Results. TGF-β1 induced higher LASP1 expression. LASP1 silence and overexpression blunted or promoted cell invasion, migration, and proliferation upon TGF-β1 stimulation. LASP1 also regulated the expression of vimentin, N-cadherin, and E-cadherin in TGF-β1-treated cells. Activity of key Smad proteins (pSmad2 and pSmad3) and protein level of Smad7 were markedly regulated through LASP1. Furthermore, LASP1 affected the nuclear localizations of pSmad2, pSmad3, and Snail1. Conclusion. This study reveals that LASP1 regulates the TGF-β1/Smad/Snail signaling pathway and EMT markers and features, involving in key signal molecules and their nuclear levels. Therefore, LASP1 might be a drug target in lung cancer.
Collapse
|
7
|
Digiacomo G, Fumarola C, La Monica S, Bonelli MA, Cretella D, Alfieri R, Cavazzoni A, Galetti M, Bertolini P, Missale G, Petronini PG. Simultaneous Combination of the CDK4/6 Inhibitor Palbociclib With Regorafenib Induces Enhanced Anti-tumor Effects in Hepatocarcinoma Cell Lines. Front Oncol 2020; 10:563249. [PMID: 33072590 PMCID: PMC7539564 DOI: 10.3389/fonc.2020.563249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
Advanced hepatocarcinoma (HCC) is an aggressive malignancy with poor prognosis and limited treatment options. Alterations of the cyclin D-CDK4/6-Rb pathway occur frequently in HCC, providing the rationale for its targeting at least in a molecular subset of HCC. In a panel of HCC cell lines, we investigated whether the CDK4/6 inhibitor palbociclib might improve the efficacy of regorafenib, a powerful multi-kinase inhibitor approved as second-line treatment for advanced HCC after sorafenib failure and currently under clinical investigation as first-line therapy in combination with immunotherapy. In Rb-proficient cells, the simultaneous drug combination, but not the sequential schedules, inhibited cell proliferation, either in short or in long-term experiments, and induced cell death more strongly than individual treatments. Moreover, the combination significantly reduced spheroid cell growth and inhibited cell migration/invasion. The superior efficacy of palbociclib plus regorafenib emerged also under hypoxia and was associated with a significant down-regulation of CDK4/6-Rb-myc and mTORC1/p70S6K signaling. Moreover, regorafenib suppressed palbociclib-induced expression of cyclin D1 contributing to the cytotoxic effects of the combination. Besides these inhibitory effects on cell viability/proliferation, palbociclib and regorafenib reduced glucose uptake, although this effect was dependent on the cell model and on the oxygen availability (normoxia or hypoxia). Palbociclib and regorafenib combination impaired glucose uptake and utilization, down-regulating basal and hypoxia-induced expression of HIF-1α, HIF-2α, GLUT-1, and MCT4 proteins as well as the activity/expression of glycolytic enzymes (HK2, PFKP, aldolase A, PKM2). In addition, regorafenib alone reduced mitochondrial respiration. The combined treatment impaired glucose metabolism and respiration without enhancing the effects of the single agents. Our findings provide pre-clinical evidence for the effectiveness of palbociclib and regorafenib combination in HCC cell models.
Collapse
Affiliation(s)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara A Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maricla Galetti
- Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro (INAIL) Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Rome, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | | |
Collapse
|
8
|
La Monica S, Minari R, Cretella D, Bonelli M, Fumarola C, Cavazzoni A, Galetti M, Digiacomo G, Riccardi F, Petronini PG, Tiseo M, Alfieri R. Acquired BRAF G469A Mutation as a Resistance Mechanism to First-Line Osimertinib Treatment in NSCLC Cell Lines Harboring an EGFR Exon 19 Deletion. Target Oncol 2020; 14:619-626. [PMID: 31502118 DOI: 10.1007/s11523-019-00669-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osimertinib is a new third-generation, epidermal growth factor receptor-tyrosine kinase inhibitor highly selective for the epidermal growth factor receptor with both activating and T790M mutations. A recent phase III trial showed a statistically significant progression-free survival benefit with osimertinib vs. gefitinib or erlotinib as first-line treatment for EGFR-mutated non-small cell lung cancer, and preliminary data are available on resistance mechanisms to first-line osimertinib therapy. OBJECTIVE The objective of this study was to examine potential in vitro mechanisms of acquired resistance to osimertinib in a cell model carrying an EGFR exon 19 deletion. METHODS PC9 cells were cultured in the presence of increasing concentrations of osimertinib (ranging from 10 to 500 nM) to generate resistant cells. Three clones resistant to osimertinib (half maximal inhibitory concentration > 1 μM) were isolated, genotyped by next-generation sequencing and tested for drug sensitivity. Cell proliferation and migration, cell death, and signaling transduction pathways were analyzed. RESULTS Our study revealed that all the three resistant clones developed acquired resistance via the BRAF G469A mutation maintaining a constitutive activation of the ERK pathway. Stable transfection of PC9 and HCC827 cells with a plasmid containing BRAF G469A rendered the cells resistant to osimertinib. Treatment with selumetinib and trametinib, but not dabrafenib, restored the sensitivity to osimertinib and enhanced cell death in the resistant clones with the BRAF G469A mutation. CONCLUSIONS Our in vitro studies revealed the BRAF G469A-activating mutation as a potential mechanism of acquired resistance to first-line osimertinib treatment, and provide a strategy of intervention to overcome this mechanism of resistance.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maricla Galetti
- Italian Workers' Compensation Authority (INAIL) Research Center, Parma, Italy.,Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | | | - Federica Riccardi
- Regional Reference Centre for Inherited Bleeding Disorders, University Hospital of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy. .,Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Cascioferro S, Petri GL, Parrino B, Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D, Peters GJ, Cirrincione G, Giovannetti E, Diana P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem 2020; 189:112088. [PMID: 32007666 DOI: 10.1016/j.ejmech.2020.112088] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
A new series of eighteen imidazo [2,1-b] [1,3,4]thiadiazole derivatives was efficiently synthesized and screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. Two out of eighteen derivatives, compounds 12a and 12h, showed remarkably cytotoxic activity with the half maximal inhibitory concentration values (IC50) ranging from 0.23 to 11.4 μM, and 0.29-12.2 μM, respectively. However, two additional compounds, 12b and 13g, displayed remarkable in vitro antiproliferative activity against pancreatic ductal adenocarcinoma (PDAC) cell lines, including immortalized (SUIT-2, Capan-1, Panc-1), primary (PDAC-3) and gemcitabine-resistant (Panc-1R), eliciting IC50 values ranging from micromolar to sub-micromolar level, associated with significant reduction of cell-migration and spheroid shrinkage. These remarkable results might be explained by modulation of key regulators of epithelial-to-mesenchymal transition (EMT), including E-cadherin and vimentin, and inhibition of metalloproteinase-2/-9. High-throughput arrays revealed a significant inhibition of the phosphorylation of 45 tyrosine kinases substrates, whose visualization on Cytoscape highlighted PTK2/FAK as an important hub. Inhibition of phosphorylation of PTK2/FAK was validated as one of the possible mechanisms of action, using a specific ELISA. In conclusion, novel imidazothiadiazoles show potent antiproliferative activity, mediated by modulation of EMT and PTK2/FAK.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Giovanna Li Petri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126, Pisa, Italy
| | - Cecilia Bergonzini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Daan Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
10
|
Rebuzzi SE, Alfieri R, La Monica S, Minari R, Petronini PG, Tiseo M. Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: Review of the literature and future perspectives. Crit Rev Oncol Hematol 2019; 146:102820. [PMID: 31785991 DOI: 10.1016/j.critrevonc.2019.102820] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) improved clinical outcome compared to chemotherapy in EGFR mutated advanced non-small cell lung cancer (NSCLC) patients. Nonetheless, acquired resistance develops within 10-14 months and 20-30% of EGFR-mutated patients do not respond to EGFR-TKI. In order to delay or overcome acquired resistance to EGFR-TKIs, combination therapies of EGFR-TKIs with chemotherapy has been investigated with conflicting results. Early studies failed to show a survival benefit because of a lack of patient selection, but more recently clinical studies in EGFR mutated patients have shown promising results. This review summarizes preclinical and clinical studies of combination of EGFR-TKIs, including the third-generation TKI osimertinib, with chemotherapy in first- and second-line settings, using concurrent or intercalated treatment strategies. In the new era of third-generation EGFR-TKIs, new studies of this combination strategy are warranted.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy; Medical Oncology Unit 1, Ospedale Policlinico San Martino IST, University of Genova, Largo Rosanna Benzi 10, 16143, Genova, Italy.
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Roberta Minari
- Medical Oncology, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Pier Giorgio Petronini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Marcello Tiseo
- Medical Oncology, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy; Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
11
|
La Monica S, Minari R, Cretella D, Flammini L, Fumarola C, Bonelli M, Cavazzoni A, Digiacomo G, Galetti M, Madeddu D, Falco A, Lagrasta CA, Squadrilli A, Barocelli E, Romanel A, Quaini F, Petronini PG, Tiseo M, Alfieri R. Third generation EGFR inhibitor osimertinib combined with pemetrexed or cisplatin exerts long-lasting anti-tumor effect in EGFR-mutated pre-clinical models of NSCLC. J Exp Clin Cancer Res 2019; 38:222. [PMID: 31138260 PMCID: PMC6537372 DOI: 10.1186/s13046-019-1240-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The third generation Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI) osimertinib has been initially approved for T790M positive Non-Small Cell Lung Cancer (NSCLC) and more recently for first-line treatment of EGFR-mutant T790M negative NSCLC patients. Similarly to previous generation TKIs, despite the high response rate, disease progression eventually occurs and current clinical research is focused on novel strategies to delay the emergence of osimertinib resistance. In this study we investigated the combination of osimertinib with pemetrexed or cisplatin in EGFR-mutated NSCLC cell lines and xenografts. METHODS Tumor growth was evaluated in a PC9T790M xenograft model and tissue composition was morphometrically determined. PC9, PC9T790M and HCC827 cell lines were employed to test the efficacy of osimertinib and chemotherapy combination in vitro. Cell viability and cell death were evaluated by MTT assay and fluorescence microscopy. Protein expression and gene status were analysed by Western blotting, fluorescence in situ hybridization analysis, next-generation sequencing and digital droplet PCR. RESULTS In xenograft models, osimertinib significantly inhibited tumor growth, however, as expected, in 50% of mice drug-resistance developed. A combination of osimertinib with pemetrexed or cisplatin prevented or at least delayed the onset of resistance. Interestingly, such combinations increased the fraction of fibrotic tissue and exerted a long-lasting activity after stopping therapy. In vitro studies demonstrated the stronger efficacy of the combination over the single treatments in inhibiting cell proliferation and inducing cell death in PC9T790M cells as well as in T790M negative PC9 and HCC827 cell lines, suggesting the potential role of this strategy also as first-line treatment. Finally, we demonstrated that osimertinib resistant clones, either derived from resistant tumors or generated in vitro, were less sensitive to pemetrexed prompting to use a chemotherapy regimen non-containing pemetrexed in patients after progression to osimertinib treatment. CONCLUSIONS Our results identify a combination between osimertinib and pemetrexed or cisplatin potentially useful in the treatment of EGFR-mutated NSCLC patients, which might delay the appearance of osimertinib resistance with long-lasting effects.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maricla Galetti
- Italian Workers’ Compensation Authority (INAIL) Research Center, Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Anna Squadrilli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Adjei IM, Temples MN, Brown SB, Sharma B. Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics 2018; 10:E205. [PMID: 30366428 PMCID: PMC6320768 DOI: 10.3390/pharmaceutics10040205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Bone metastases are common complications of solid tumors, particularly those of the prostate, breast, and lungs. Bone metastases can lead to painful and devastating skeletal-related events (SREs), such as pathological fractures and nerve compressions. Despite advances in treatment for cancers in general, options for bone metastases remain inadequate and generally palliative. Anticancer drugs (chemotherapy and radiopharmaceuticals) do not achieve therapeutic concentrations in the bone and are associated with dose-limiting side effects to healthy tissues. Nanomedicines, with their tunable characteristics, have the potential to improve drug targeting to bone metastases while decreasing side effects for their effective treatment. In this review, we present the current state of the art for nanomedicines to treat bone metastases. We also discuss new treatment modalities enhanced by nanomedicine and their effects on SREs and disease progression.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Madison N Temples
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
13
|
Wang J, Wang Y, Zheng C, Hou K, Zhang T, Qu X, Liu Y, Kang J, Hu X, Che X. Tyrosine kinase inhibitor-induced IL-6/STAT3 activation decreases sensitivity of EGFR-mutant non-small cell lung cancer to icotinib. Cell Biol Int 2018; 42:1292-1299. [PMID: 29885023 DOI: 10.1002/cbin.11000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/31/2018] [Indexed: 12/27/2022]
Abstract
Tyrosine kinase Inhibitors (TKIs) of epidermal growth factor receptor (EGFR) has considerably benefited for non-small cell lung carcinomas (NSCLC) harbor mutations in EGFR. However, the factors attenuating EGFR-TKI efficiency are obstacles to inhibit the proliferation of EGFR-mutant NSCLC cells successfully. Clarifying the insensitivity mechanisms of EGFR-TKI would help to develop new treatment strategy. In this study, the sensitivity of EGFR-mutant NSCLC cell lines, PC9 and HCC827, to icotinib was detected. Similar with other EGFR-TKIs such as gefitinib and erlortinib in previous research, the proliferation of two cell lines was apparently inhibited. However, we surprisingly found that contrast with the suppression of EGFR-AKT/ERK pathway, STAT3 was significantly activated in PC9 cells with the treatment of icotinib, but not in HCC827 cells. Further study confirmed that icotinib concomitantly induced IL-6 secretion and src activation in PC9 cells. Moreover, with the treatment of IL-6 neutralizing antibody or src inhibitor, dasatinib, icotinib-induced phosphorylation of STAT3 was reduced, as well as the sensitivity of PC9 to icotinib was also partially increased. Our results suggest that Src/IL-6/STAT3 bypass pathway is activated to maintain cell survival when the EGFR pathway was inhibited by TKIs, even in some EGFR-mutant NSCLC cells sensitive to TKIs. This finding provides a groundwork for potential combinatorial treatment with TKIs and Src or STAT3 inhibitor to improve icotinib sensitivity.
Collapse
Affiliation(s)
- Jinyao Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Chunlei Zheng
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Tieqiong Zhang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Jian Kang
- Department of Pulmonary Medicine, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang 110001, China
| |
Collapse
|
14
|
潘 莹, 黄 思, 王 霞, 龚 五, 梁 翠, 杜 均, 彭 东, 谢 云, 郑 礼, 张 楠, 全 文. [Activation of nuclear factor-κB subunit p50/p65 enhances gefitinib resistance of lung adenocarcinoma H1650 cell line]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:584-590. [PMID: 29891456 PMCID: PMC6743890 DOI: 10.3969/j.issn.1673-4254.2018.05.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the intrinsic connection between activation of classical nuclear factor-κB (NF-κB) pathway and gefitinib resistance in human lung adenocarcinoma H1650 cells. METHODS Human lung adenocarcinoma H1650 cells were exposed to gefitinib continuously for 60 days to obtain resistant H1650 cells. The expressions of P-IκBα, P-p50 and P-p65 in the cytoplasm or nuclei were detected using Western blotting in human lung adenocarcinoma HCC827 cells, parental H1650 cells and gefitinib-resistant H1650 cells. The effects of gefitinib alone or in combination with PDTC on the survival rate and expressions of NF-κB P-p50 and P-p65 were compared among the 3 cell lines. RESULTS Gefitinib-resistant H1650 cells showed increased cytoplasmic and nuclear P-IκBα expressions. The expressions of P-p50 and P-p65 differed significantly among the 3 cell line, decreasing in the order of resistant H1650 cells, parental H1650 cells, and gefitinib sensitive HCC827 cell lines (P<0.05 or 0.01). Treatment with gefitinib alone resulted in a significantly lower cell inhibition rate in resistant H1650 cells than in the parental H1650 cells (P<0.05) and HCC827 cells (P<0.01). The resistant H1650 cells had a significantly higher expression of P-p50 and P-p65 than other two cell lines (P<0.05). In both the resistant and parental H1650 cells, gefitinib significantly lowered P-p50 and P-p65 expressions (P<0.05 or 0.01), and the combined treatment with gefitinib and PDTC significantly decreased the cell survival rate and further lowered the cytoplasmic and nuclear expressions of P-p50 and P-p65 (P<0.01 or 0.01). CONCLUSION The activation of classical NF-κB pathway is a key factor contributing to transformation of the parental H1650 cells into gefitinib-resistant cells. Gefitinib combined with PDTC can inhibit P-IκBα production and NF-κB P-p50 and P-p65 activation to suppress the survival of residual H1650 cells and the generation of gefitinib-resistant cells.
Collapse
Affiliation(s)
- 莹 潘
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 思超 黄
- 珠海市人民医院 药学部, 广东 珠海 519000Department of Pharmacy, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 霞 王
- 珠海市人口和计划生育服务中心, 广东 珠海 519000Population and Family Planning Service Center of Zhuhai, Zhuhai 519000, China
| | - 五星 龚
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 翠微 梁
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 均祥 杜
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 东旭 彭
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 云 谢
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 礼平 郑
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 楠 张
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| | - 文 全
- 珠海市人民医院 肿瘤科, 珠海市人民医院, 广东 珠海 519000Department of Oncology, Zhuhai People's Hospital, Zhuhai 519000, China
| |
Collapse
|
15
|
Qin T, Liu W, Huo J, Li L, Zhang X, Shi X, Zhou J, Wang C. SIRT1 expression regulates the transformation of resistant esophageal cancer cells via the epithelial-mesenchymal transition. Biomed Pharmacother 2018; 103:308-316. [PMID: 29656187 DOI: 10.1016/j.biopha.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (SIRT1) belongs to the mammalian sirtuin family and plays an important role in deacetylating histones and non-histones. SIRT1 is associated with tumor metastasis in several tumors. However, the effect of SIRT1 on the mechanism of metastasis in resistant esophageal cancer remains unclear. In this study, we demonstrated that increased migration and invasion in drug-resistant esophageal cancer cells (EC109/PTX, TE-1/PTX). Our experiments revealed that the selective SIRT1 inhibitor (EX527) significantly suppressed cells migrate and inhibited the occurrence of the epithelial-mesenchymal transition (EMT), thereby altering the invasiveness and metastatic potential of the esophageal cancer cell lines. In addition, we observed that the inhibition of SIRT1 could alter the expression of snail. In conclusion, these results indicate that SIRT1 may promote the transformation of tumor cells by inducing the EMT and may serve as a potential molecular target for the treatment of resistant esophageal cancer.
Collapse
Affiliation(s)
- Tiantian Qin
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Weihua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Junfeng Huo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Leilei Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Xueyan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Xiaoli Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Jinlei Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
16
|
Wang D, Narula N, Azzopardi S, Smith RS, Nasar A, Altorki NK, Mittal V, Somwar R, Stiles BM, Du YCN. Expression of the receptor for hyaluronic acid mediated motility (RHAMM) is associated with poor prognosis and metastasis in non-small cell lung carcinoma. Oncotarget 2018; 7:39957-39969. [PMID: 27220886 PMCID: PMC5129984 DOI: 10.18632/oncotarget.9554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 01/08/2023] Open
Abstract
The receptor for hyaluronic acid-mediated motility (RHAMM) is upregulated in various cancers, but its role in primary and metastatic non-small cell lung carcinoma (NSCLC) remains to be determined. Here, we investigate the clinical relevance of RHAMM expression in NSCLC. RHAMM protein expression correlates with histological differentiation stages and extent of the primary tumor (T stages) in 156 patients with primary NSCLC. Importantly, while focal RHAMM staining pattern is present in 57% of primary NSCLC, intense RHAMM protein expression is present in 96% of metastatic NSCLC cases. In a publicly available database, The Cancer Genome Atlas (TCGA), RHAMM mRNA expression is 12- and 10-fold higher in lung adenocarcinoma and squamous lung carcinoma than in matched normal lung tissues, respectively. RHAMM mRNA expression correlates with stages of differentiation and inferior survival in more than 400 cases of lung adenocarcinoma in the Director's Challenge cohort. Of 4 RHAMM splice variants, RHAMMv3 (also known as RHAMMB) is the dominant variant in NSCLC. Moreover, shRNA-mediated knockdown of RHAMM reduced the migratory ability of two lung adenocarcinoma cell lines, H1975 and H3255. Taken together, RHAMM, most likely RHAMMv3 (RHAMMB), can serve as a prognostic factor for lung adenocarcinomas and a potential therapeutic target in NSCLC to inhibit tumor migration.
Collapse
Affiliation(s)
- Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Azzopardi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Roger S Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
La Monica S, Cretella D, Bonelli M, Fumarola C, Cavazzoni A, Digiacomo G, Flammini L, Barocelli E, Minari R, Naldi N, Petronini PG, Tiseo M, Alfieri R. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines. J Exp Clin Cancer Res 2017; 36:174. [PMID: 29202823 PMCID: PMC5716361 DOI: 10.1186/s13046-017-0653-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification. METHODS The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines. The potential of overcoming osimertinib resistance with T-DM1 was tested in a PC9/HER2c1 xenograft model. RESULTS T-DM1 exerted an additive effect when combined with osimertinib in terms of inhibition of cell proliferation, cell death and ADCC induction in PC9, PC9-T790M and H1975 cell lines. Combining osimertinib and T-DM1 using different schedules in long-term growth experiments revealed that the appearance of osimertinib-resistance was prevented in PC9-T790M and delayed in H1975 cells when the two drugs were given together. By contrast, when osimertinib was followed by T-DM1 an antagonistic effect was observed on cell proliferation, cell death and resistance acquisition. In xenograft models, we demonstrated that HER-2 amplification was associated with osimertinib-resistance and that T-DM1 co-administration is a potential strategy to overcome this resistance. CONCLUSIONS Our data suggest that concomitant treatment with osimertinib and T-DM1 may be a promising therapeutic strategy for EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Lisa Flammini
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Roberta Minari
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Nadia Naldi
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Cavazzoni A, La Monica S, Alfieri R, Ravelli A, Van Der Steen N, Sciarrillo R, Madeddu D, Lagrasta CAM, Quaini F, Bonelli M, Fumarola C, Cretella D, Digiacomo G, Tiseo M, Peters GJ, Ardizzoni A, Petronini PG, Giovannetti E. Enhanced efficacy of AKT and FAK kinase combined inhibition in squamous cell lung carcinomas with stable reduction in PTEN. Oncotarget 2017; 8:53068-53083. [PMID: 28881794 PMCID: PMC5581093 DOI: 10.18632/oncotarget.18087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/β, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression.
Collapse
Affiliation(s)
- Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Ravelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nele Van Der Steen
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Rocco Sciarrillo
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC/Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Fumarola C, Cretella D, La Monica S, Bonelli MA, Alfieri R, Caffarra C, Quaini F, Madeddu D, Falco A, Cavazzoni A, Digiacomo G, Mazzaschi G, Vivo V, Barocelli E, Tiseo M, Petronini PG, Ardizzoni A. Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. Oncotarget 2017; 8:91841-91859. [PMID: 29190880 PMCID: PMC5696146 DOI: 10.18632/oncotarget.19279] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/18/2017] [Indexed: 12/26/2022] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/over-expression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/over-expressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serum-deprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF-1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR down-regulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mara A Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cristina Caffarra
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Vivo
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
20
|
Kaushik V, Yakisich JS, Azad N, Kulkarni Y, Venkatadri R, Wright C, Rojanasakul Y, Iyer AKV. Anti-Tumor Effects of Cardiac Glycosides on Human Lung Cancer Cells and Lung Tumorspheres. J Cell Physiol 2017; 232:2497-2507. [DOI: 10.1002/jcp.25611] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Yogesh Kulkarni
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Rajkumar Venkatadri
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Clayton Wright
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; West Virginia University; Morgantown West Virginia
| | - Anand Krishnan V. Iyer
- Department of Pharmaceutical Sciences; Hampton University School of Pharmacy; Hampton Virginia
| |
Collapse
|
21
|
miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochem Biophys Res Commun 2016; 482:22-27. [PMID: 27836543 DOI: 10.1016/j.bbrc.2016.11.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, a large proportion of NSCLC patients were insensitive to chemotherapy. This study explored the role of miR-34a in regulating sensitivity of NSCLC cells to cisplatin and its downstream targets. The quantitative PCR result showed that miR-34a expression was upregulated in cisplatin sensitive NSCLC patients compared cisplatin insensitive NSCLC controls. By applying loss-and-gain function analysis, we demonstrated that miR-34a directly targeted to MYCN to sensitize NSCLC cells to cisplatin. In addition, p53 was found to monitor the expression of miR-34a in NSCLC cells after cisplatin treatment. Therefore, the sensitivity of cisplatin in NSCLC cells was modulated via p53/miR-34a/MYCN axis.
Collapse
|
22
|
Jakobsen KR, Demuth C, Sorensen BS, Nielsen AL. The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Transl Lung Cancer Res 2016; 5:172-82. [PMID: 27186512 DOI: 10.21037/tlcr.2016.04.07] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inhibition of the epidermal growth factor receptor (EGFR) is an important strategy when treating non-small cell lung cancer (NSCLC) patients. However, intrinsic resistance or development of resistance during the course of treatment constitutes a major challenge. The knowledge on EGFR-directed tyrosine kinase inhibitors (TKIs) and their biological effect keeps increasing. Within the group of patients with EGFR mutations some benefit to a much higher degree than others, and for patients lacking EGFR mutations a subset experience an effect. Up to 70% of patients with EGFR mutations and 10-20% of patients without EGFR mutations initially respond to the EGFR-TKI erlotinib, but there is a severe absence of good prognostic markers. Despite initial effect, all patients acquire resistance to EGFR-TKIs. Multiple mechanisms have implications in resistance development, but much is still to be explored. Epithelial to mesenchymal transition (EMT) is a transcriptionally regulated phenotypic shift rendering cells more invasive and migratory. Within the EMT process lays a need for external or internal stimuli to give rise to changes in central signaling pathways. Expression of mesenchymal markers correlates to a bad prognosis and an inferior response to EGFR-TKIs in NSCLC due to the contribution to a resistant phenotype. A deeper understanding of the role of EMT in NSCLC and especially in EGFR-TKI resistance-development constitute one opportunity to improve the benefit of TKI treatment for the individual patient. Many scientific studies have linked the EMT process to EGFR-TKI resistance in NSCLC and our aim is to review the role of EMT in both intrinsic and acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Kristine Raaby Jakobsen
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark ; 2 Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Christina Demuth
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark ; 2 Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Boe Sandahl Sorensen
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark ; 2 Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark ; 2 Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
La Monica S, Madeddu D, Tiseo M, Vivo V, Galetti M, Cretella D, Bonelli M, Fumarola C, Cavazzoni A, Falco A, Gervasi A, Lagrasta CA, Naldi N, Barocelli E, Ardizzoni A, Quaini F, Petronini PG, Alfieri R. Combination of Gefitinib and Pemetrexed Prevents the Acquisition of TKI Resistance in NSCLC Cell Lines Carrying EGFR-Activating Mutation. J Thorac Oncol 2016; 11:1051-63. [PMID: 27006151 DOI: 10.1016/j.jtho.2016.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors is a clinical issue in patients with epidermal growth factor receptor gene (EGFR)-mutated non-small cell lung cancer (NSCLC). The aim of this study was to investigate the potential of combining gefitinib and pemetrexed in preventing the acquisition of resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines harboring EGFR exon 19 deletion. METHODS The effect of different combinatorial schedules of gefitinib and pemetrexed on cell proliferation, cell cycle, apoptosis, and acquisition of gefitinib resistance in PC9 and HCC827 NSCLC cell lines and in PC9 xenograft models was investigated. RESULTS Simultaneous treatment with gefitinib and pemetrexed enhanced cell growth inhibition and cell death and prevented the appearance of gefitinib resistance mediated by T790M mutation or epithelial-to-mesenchymal transition (EMT) in PC9 and HCC827 cells, respectively. In PC9 cells and in PC9 xenografts the combination of gefitinib and pemetrexed, with different schedules, prevented gefitinib resistance only when pemetrexed was the first treatment, given alone or together with gefitinib. Conversely, when gefitinib alone was administered first and pemetrexed sequentially alternated, a negative interaction was observed and no prevention of gefitinib resistance was documented. The mechanisms of resistance that developed in vivo included T790M mutation and EMT. The induction of EMT was a feature of tumors treated with gefitinib when given before pemetrexed, whereas T790M was recorded only in tumors treated with gefitinib alone. CONCLUSIONS The combination of gefitinib and pemetrexed is effective in preventing gefitinib resistance; the application of intermittent treatments requires that gefitinib not be administered before pemetrexed.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Valentina Vivo
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Maricla Galetti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; Italian Workers' Compensation Authority Research Centre, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Angela Falco
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Andrea Gervasi
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, Parma, Italy
| | | | - Nadia Naldi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Roberta Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| |
Collapse
|
24
|
Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam KC, Muñoz-Antonia T, Qu X, Eschrich S, Uramoto H, Tanaka F, Nasarre P, Gemmill RM, Roche J, Drabkin HA, Haura EB. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0147344. [PMID: 26789630 PMCID: PMC4720447 DOI: 10.1371/journal.pone.0147344] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Kim C. Ohaegbulam
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Teresita Muñoz-Antonia
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Xiaotao Qu
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Steven Eschrich
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Hidetaka Uramoto
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Patrick Nasarre
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Robert M. Gemmill
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joëlle Roche
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harry A. Drabkin
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Epithelial Mesenchymal Transition in Aggressive Lung Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 890:37-56. [DOI: 10.1007/978-3-319-24932-2_3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Galvani E, Sun J, Leon LG, Sciarrillo R, Narayan RS, Tjin Tham Sjin R, Lee K, Ohashi K, Heideman DA, Alfieri RR, Heynen GJ, Bernards R, Smit EF, Pao W, Peters GJ, Giovannetti E. NF-κB drives acquired resistance to a novel mutant-selective EGFR inhibitor. Oncotarget 2015; 6:42717-42732. [PMID: 26015408 PMCID: PMC4767465 DOI: 10.18632/oncotarget.3956] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 01/22/2023] Open
Abstract
The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs.
Collapse
Affiliation(s)
- Elena Galvani
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jing Sun
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Leticia G. Leon
- Instituto de Tecnologias Biomedicas, Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife, Spain
| | - Rocco Sciarrillo
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Department Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ravi S. Narayan
- Department Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Kwangho Lee
- Celgene Avilomics Research, Bedford, MA, USA
| | - Kadoaki Ohashi
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Roberta R. Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Guus J. Heynen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - William Pao
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Godefridus J. Peters
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, DIPINT, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc Natl Acad Sci U S A 2015; 112:8409-14. [PMID: 26100884 DOI: 10.1073/pnas.1500223112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.
Collapse
|
28
|
Bonelli MA, Cavazzoni A, Saccani F, Alfieri RR, Quaini F, La Monica S, Galetti M, Cretella D, Caffarra C, Madeddu D, Frati C, Lagrasta CA, Falco A, Rossetti P, Fumarola C, Tiseo M, Petronini PG, Ardizzoni A. Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations. Mol Cancer Ther 2015; 14:1916-27. [PMID: 26013318 DOI: 10.1158/1535-7163.mct-14-0892] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
A prominent role in the pathogenesis of squamous cell carcinoma of the lung (SQCLC) has been attributed to the aberrant activation of the PI3K signaling pathway, due to amplification or mutations of the p110α subunit of class I phosphatidylinositol 3-kinase (PIK3CA) gene. The aim of our study was to determine whether different genetic alterations of PIK3CA affect the biologic properties of SQCLC and to evaluate the response to specific targeting agents in vitro and in vivo. The effects of NVP-BEZ235, NVP-BKM120, and NVP-BYL719 on two-dimensional/three-dimensional (2D/3D) cellular growth, epithelial-to-mesenchymal transition, and invasiveness were evaluated in E545K or H1047R PIK3CA-mutated SQCLC cells and in newly generated clones carrying PIK3CA alterations, as well as in a xenograft model. PIK3CA mutated/amplified cells showed increased growth rate and enhanced migration and invasiveness, associated with an increased activity of RhoA family proteins and the acquisition of a mesenchymal phenotype. PI3K inhibitors reverted this aggressive phenotype by reducing metalloproteinase production, RhoA activity, and the expression of mesenchymal markers, with the specific PI3K inhibitors NVP-BKM120 and NVP-BYL719 being more effective than the dual PI3K/mTOR inhibitor NVP-BEZ235. A xenograft model of SQCLC confirmed that PIK3CA mutation promotes the acquisition of a mesenchymal phenotype in vivo and proved the efficacy of its specific targeting drug NVP-BYL719 in reducing the growth and the expression of mesenchymal markers in xenotransplanted tumors. These data indicate that PIK3CA mutation/amplification may represent a good predictive feature for the clinical application of specific PI3K inhibitors in SQCLC patients.
Collapse
Affiliation(s)
- Mara A Bonelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Andrea Cavazzoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Francesca Saccani
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Roberta R Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Maricla Galetti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. Italian Workers' Compensation Authority (INAIL) Research Center at the University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Cristina Caffarra
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Angela Falco
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Pietro Rossetti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Claudia Fumarola
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Andrea Ardizzoni
- Division of Medical Oncology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
29
|
Rudisch A, Dewhurst MR, Horga LG, Kramer N, Harrer N, Dong M, van der Kuip H, Wernitznig A, Bernthaler A, Dolznig H, Sommergruber W. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts. PLoS One 2015; 10:e0124283. [PMID: 25919140 PMCID: PMC4412534 DOI: 10.1371/journal.pone.0124283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay.
Collapse
MESH Headings
- Animals
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Communication/drug effects
- Cell Line, Tumor
- Cytokines/metabolism
- Dermis/pathology
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Genes, Reporter
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Hepatocyte Growth Factor/pharmacology
- Humans
- Inflammation/pathology
- Kruppel-Like Factor 4
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- NF-kappa B/metabolism
- Neoplasm Invasiveness
- Phenotype
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Stromal Cells/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Albin Rudisch
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center of Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | - Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Nathalie Harrer
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Meng Dong
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Baden-Württemberg, Germany
| | - Heiko van der Kuip
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Baden-Württemberg, Germany
| | - Andreas Wernitznig
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Andreas Bernthaler
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Sommergruber
- Department of Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- * E-mail:
| |
Collapse
|
30
|
Miyoshi S, Kato T, Katayama H, Ito R, Mizuno Y, Okura T, Higaki J. A case of EGFR mutant lung adenocarcinoma that acquired resistance to EGFR-tyrosine kinase inhibitors with MET amplification and epithelial-to-mesenchymal transition. Onco Targets Ther 2015; 8:783-7. [PMID: 25914548 PMCID: PMC4399517 DOI: 10.2147/ott.s78911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
EGFR mutant lung cancer responds to EGFR tyrosine kinase inhibitors (TKIs), but all patients eventually develop resistance to EGFR-TKIs. Herein we report a case of EGFR mutant lung adenocarcinoma that acquired resistance to EGFR-TKI with MET amplification and epithelial-to-mesenchymal transition (EMT). A 73-year-old woman was diagnosed with adenocarcinoma harboring an EGFR exon 19 deletion. She received gefitinib as second-line therapy. Tumors were reduced 1 month after gefitinib therapy. However, only a few months later, chest computed tomography results indicated cancer progression. Gefitinib therapy was stopped and docetaxel therapy started. However, she died 13 days after admission. Microscopic examination of postmortem specimens revealed a diffuse proliferation of atypical giant cells in primary and metastatic lesions, but no adenocarcinomatous components as in the antemortem specimens. Immunohistochemical analyses showed that antemortem tumor specimens were positive for CDH1 but negative for VIM. In contrast, postmortem tumor specimens were positive for VIM but negative for CDH1. Genetic analyses revealed MET amplification. We concluded that resistance to EGFR-TKI might be caused by MET amplification and EMT. To our knowledge, no clinical studies have reported that MET amplification and EMT together may be associated with acquired resistance to EGFR-TKI. Second biopsy after the development of EGFR-TKI resistance may be recommended to determine the best therapeutic strategy.
Collapse
Affiliation(s)
- Seigo Miyoshi
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takahide Kato
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hitoshi Katayama
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryoji Ito
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yosuke Mizuno
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takafumi Okura
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jitsuo Higaki
- Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
31
|
Della Corte CM, Fasano M, Papaccio F, Ciardiello F, Morgillo F. Role of HGF-MET Signaling in Primary and Acquired Resistance to Targeted Therapies in Cancer. Biomedicines 2014; 2:345-358. [PMID: 28548075 PMCID: PMC5344276 DOI: 10.3390/biomedicines2040345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
The Hepatocyte growth factor (HGF)-mesenchymal-epithelial transition (MET) pathway is deregulated in several cancers and is associated with aggressive phenotype and worse prognosis. MET, a tyrosine kinase receptor activated by HGF, plays a physiological role in embryogenesis, promoting cell growth, survival and motility. HGF-MET aberrant activation in tumorigenesis acts through various mechanisms: paracrine/autocrine HGF production, MET overexpression, MET germ-line and sporadic mutations and cross-talk with other growth factor receptors. In addition, MET activation could represent a mechanism of escape from other targeted therapies, through receptor amplification or over-stimulation by the ligand, as demonstrated in non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) models with acquired resistance to epidermal growth factor receptor (EGFR) inhibitors and also in models of melanoma resistant to the BRAF inhibitor vemurafenib. As a consequence, a lot of molecules targeting MET signaling are under clinical investigation as single agent or in combination with other targeted drugs. Patient selection, based on MET expression on tumor samples (eventually, by re-biopsy of new metastatic sites), and pharmacokinetic/pharmacodynamic markers are needed. Authors review the latest data on the role of MET and the molecular mechanism underlying primary or acquired resistance to biological agents, focusing on NSCLC, CRC and melanoma.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi e A. Lanzara", Second University of Naples, Napoli 80131, Italy.
| | - Morena Fasano
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi e A. Lanzara", Second University of Naples, Napoli 80131, Italy.
| | - Federica Papaccio
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi e A. Lanzara", Second University of Naples, Napoli 80131, Italy.
| | - Fortunato Ciardiello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi e A. Lanzara", Second University of Naples, Napoli 80131, Italy.
| | - Floriana Morgillo
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi e A. Lanzara", Second University of Naples, Napoli 80131, Italy.
| |
Collapse
|
32
|
Sui H, Zhu L, Deng W, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 2014; 37:584-9. [PMID: 25342509 DOI: 10.1159/000367802] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
Chemotherapy is an important therapeutic option for most cancer patients; however, one major obstacle is the occurrence of drug resistance which usually leads to failure of the chemotherapy. Emerging evidence suggests that there are intricate links between epithelial-mesenchymal transition (EMT)-type cells and drug resistance in tumors. The process of drug resistance can be regulated by a diverse array of cytokines and growth factors, higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug efflux transporters. Moreover, recent reports have indicated that the emergence of drug resistance may occur as a result of EMT. In this regard, most drug-resistant cancers contain a subpopulation of cells with stem-like and mesenchymal features that are resistant to chemotherapy. In this review, we will explain potential mechanisms for the association between EMT induction and the emergence of drug resistance, and discuss new approaches and drugs for the clinical management of drug-resistant cancer induced by EMT.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | |
Collapse
|
33
|
Davis FM, Stewart TA, Thompson EW, Monteith GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 2014; 35:479-88. [PMID: 25042456 DOI: 10.1016/j.tips.2014.06.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 02/09/2023]
Abstract
The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- St. Vincent's Institute, Fitzroy, VIC, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia; Institute of Health and Biomedical Innovation, Queensland Institute of Technology, Kelvin Grove, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
34
|
Zhao NJ, Sun Z, Wang Y, Ning X, Jia N, Meng C, Wang Y. Gefitinib-Integrated Regimen versus Chemotherapy Alone in Heavily Pretreated Patients with Epidermal Growth Factor Receptor-Mutated Lung Adenocarcinoma: A Case-Control Study. Transl Oncol 2014; 7:508-12. [PMID: 24954357 PMCID: PMC4202800 DOI: 10.1016/j.tranon.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The study aimed to compare the tolerability and efficacy of gefitinib combined with chemotherapy agents versus chemotherapy alone for the treatment of epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma in heavily pretreated patients. METHODS The study was designed as a matched-pair case-control investigation to minimize intergroup heterogeneity. Patients were stratified into gefitinib plus chemotherapy and chemotherapy alone groups with matching for sex, age, ECOG performance status, progress-free survival (PFS) from previous EGFR tyrosine kinase inhibitor treatment, EGFR mutation types, and tumor metastasis status. RESULTS Sixty-six patients were selected from our database using the matched-pair method. The median age was 61 years (95% confidence interval, 57-65 years). During a follow-up period of 14.5 months on average, the overall response rates of the gefitinib-integrated and chemotherapy alone groups were 9.1% and 6.5%, respectively (P > .05), whereas the corresponding disease-control rates were 39.4% and 30.3%, respectively (P > .05). No statistically significant differences in PFS (median, 4.2 vs 3.3 months; P = .06) and overall survival (median, 10.4 vs 7.9 months; P = .44) were observed between two groups. The 6-month survival rates of the gefitinib-integrated and chemotherapy alone groups were 21.2% and 12.1%, respectively (P < .05). Side effects were mild, and all treatments were well tolerated. CONCLUSIONS Our results indicated that gefitinib-integrated therapy offered a trend to better PFS and an improved 6-month survival rate in heavily pretreated patients with metastatic EGFR-mutated lung adenocarcinoma. All treatments were well tolerated. Future prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Nan-Jie Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuzhou Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Xiaohong Ning
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ning Jia
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Changting Meng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
35
|
Cretella D, Saccani F, Quaini F, Frati C, Lagrasta C, Bonelli M, Caffarra C, Cavazzoni A, Fumarola C, Galetti M, La Monica S, Ampollini L, Tiseo M, Ardizzoni A, Petronini PG, Alfieri RR. Trastuzumab emtansine is active on HER-2 overexpressing NSCLC cell lines and overcomes gefitinib resistance. Mol Cancer 2014; 13:143. [PMID: 24898067 PMCID: PMC4058446 DOI: 10.1186/1476-4598-13-143] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
Background HER-2 represents a relatively new therapeutic target for non small cell lung cancer (NSCLC) patients. The incidence for reported HER-2 overexpression/amplification/mutations ranges from 2 to 20% in NSCLC. Moreover, HER-2 amplification is a potential mechanism of resistance to tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKI) (about 10% of cases). T-DM1, trastuzumab emtansine is an antibody-drug conjugate composed by the monoclonal antibody trastuzumab and the microtubule polymerization inhibitor DM1. The activity of T-DM1 has been studied in breast cancer but the role of T-DM1 in lung cancer remains unexplored. Methods Antiproliferative and proapoptotic effects of T-DM1 have been investigated in different NSCLC cell lines by MTT, crystal violet staining, morphological study and Western blotting. HER-2 expression and cell cycle were evaluated by flow cytometry and Western blotting. Antibody dependent cell cytotoxicity (ADCC) was measured with a CytoTox assay. Xenografted mice model has been generated using a NSCLC cell line to evaluate the effect of T-DM1 on tumor growth. Moreover, a morphometric and immunohistochemical analysis of tumor xenografts was conducted. Results In this study we investigated the effect of T-DM1 in a panel of NSCLC cell lines with different HER-2 expression levels, in H1781 cell line carrying HER-2 mutation and in gefitinib resistant HER-2 overexpressing PC9/HER2cl1 cell clone. T-DM1 efficiently inhibited proliferation with arrest in G2-M phase and induced cell death by apoptosis in cells with a significant level of surface expression of HER-2. Antibody-dependent cytotoxicity assay documented that T-DM1 maintained the same activity of trastuzumab. Our data also suggest that targeting HER-2 with T-DM1 potentially overcomes gefitinib resistance. In addition a correlation between cell density/tumor size with both HER-2 expression and T-DM1 activity was established in vitro and in an in vivo xenograft model. Conclusions Our results indicate that targeting HER-2 with T-DM1 may offer a new therapeutic approach in HER-2 over-expressing lung cancers including those resistant to EGFR TKIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Roberta R Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, Parma, 43126, Italy.
| |
Collapse
|
36
|
ZHU YU, ZHU LIELIE, LU LING, ZHANG LING, ZHANG GUODONG, WANG QIN, YANG PING. Role and mechanism of the alkylglycerone phosphate synthase in suppressing the invasion potential of human glioma and hepatic carcinoma cells in vitro. Oncol Rep 2014; 32:431-6. [DOI: 10.3892/or.2014.3189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
|