1
|
Koga Y, Kajitani N, Miyako K, Takizawa H, Boku S, Takebayashi M. TCF7L2: A potential key regulator of antidepressant effects on hippocampal astrocytes in depression model mice. J Psychiatr Res 2024; 170:375-386. [PMID: 38215648 DOI: 10.1016/j.jpsychires.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Clinical and preclinical studies suggest that hippocampal astrocyte dysfunction is involved in the pathophysiology of depression; however, the underlying molecular mechanisms remain unclear. Here, we attempted to identify the hippocampal astrocytic transcripts associated with antidepressant effects in a mouse model of depression. We used a chronic corticosterone-induced mouse model of depression to assess the behavioral effects of amitriptyline, a tricyclic antidepressant. Hippocampal astrocytes were isolated using fluorescence-activated cell sorting, and RNA sequencing was performed to evaluate the transcriptional profiles associated with depressive effects and antidepressant responses. Depression model mice exhibited typical depression-like behaviors that improved after amitriptyline treatment; the depression group mice also had significantly reduced GFAP-positive astrocyte numbers in hippocampal subfields. Comprehensive transcriptome analysis of hippocampal astrocytes showed opposing responses to amitriptyline in depression group and control mice, suggesting the importance of using the depression model. Transcription factor 7 like 2 (TCF7L2) was the only upstream regulator gene altered in depression model mice and restored in amitriptyline-treated depression model mice. In fact, TCF7L2 expression was significantly decreased in the depression group. The level of TCF7L2 long non-coding RNA, which controls mRNA expression of the TCF7L2 gene, was also significantly decreased in this group and recovered after amitriptyline treatment. The Gene Ontology biological processes associated with astrocytic TCF7L2 included proliferation, differentiation, and cytokine production. We identified TCF7L2 as a gene associated with depression- and antidepressant-like behaviors in response to amitriptyline in hippocampal astrocytes. Our findings could provide valuable insights into the mechanism of astrocyte-mediated antidepressant effects.
Collapse
Affiliation(s)
- Yusaku Koga
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kotaro Miyako
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hitoshi Takizawa
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; International Research Center for Medical Sciences, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
2
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, El-moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats. Pharmaceutics 2022; 14:1792. [PMID: 36145540 PMCID: PMC9503070 DOI: 10.3390/pharmaceutics14091792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the healing activity of amitriptyline (Amitrip) in rat diabetic wounds. A nanoformula of the drug was prepared as Amitrip-based biodegradable PEG-PLGA self-assembled nanoparticles (Amitrip-NPs) with a mean particle size of 67.4 nm. An in vivo investigation was conducted to evaluate the wound-healing process of Amitrip-NPs in streptozotocin-induced diabetic rats. Wound contraction was accelerated in rats treated with Amitrip-NPs. Histological examinations confirmed these findings, with expedited remodeling and collagen deposition in the NPs-treated animals. The formula showed anti-inflammatory activities as demonstrated by inhibition of interleukin-6 (IL-6) expression and tumor necrosis factor-α (TNF-α) expression, as well as enhanced expression of interleukin-10 (IL-10). In addition, Amitrip-NPs protected against malondialdehyde (MDA) buildup and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. The pro-collagen activity of Amitrip-NPs was confirmed by the observed enhancement of hydroxyproline wounded skin content, upregulation of Col 1A1 mRNA expression and immune expression of collagen type IV expression. Further, Amitrip-NPs significantly increased expression transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), platelet-derived growth factor-B (PDGF-B) and cluster of differentiation 31 (CD31). In conclusion, the developed Amitrip-NPs expedited wound healing in diabetic rats. This involves anti-inflammatory, antioxidant, pro-collagen and angiogenic activities of the prepared NPs. This opens the gate for evaluating the usefulness of other structurally related tricyclic antidepressants in diabetic wounds.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. El-moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Tokunaga N, Takimoto T, Nakamura Y, Hisaoka-Nakashima K, Morioka N. Downregulation of connexin 43 potentiates amitriptyline-induced brain-derived neurotrophic factor expression in primary astrocytes through lysophosphatidic acid receptor 1/3, Src, and extracellular signal-regulated kinase. Eur J Pharmacol 2022; 925:174986. [PMID: 35490723 DOI: 10.1016/j.ejphar.2022.174986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023]
Abstract
Connexin 43 (Cx43) expression is decreased in the prefrontal cortex of patients with depression, but its significance is still unknown. Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are involved in the effects of antidepressant. However, the relationship between Cx43 expression and induction of brain-derived neurotrophic factor production by antidepressants is unknown. On the basis of our previous study, which showed that adrenergic receptors stimulation results in potentiation of BDNF expression in astrocytes with downregulated Cx43 expression, we investigated the induction of BDNF expression by amitriptyline, a tricyclic antidepressant, in Cx43-knockdown astrocytes. Amitriptyline treatment potentiated BDNF expression in Cx43-knockdown astrocytes compared with those treated with non-targeting small interfering RNA (siRNA). Using a pharmacological approach, we revealed that the potentiating effect of amitriptyline on BDNF expression was mediated by lysophosphatidic acid (LPA) receptor1/3 (LPA1/3) stimulation and subsequent activation of Src-extracellular signal-regulated kinase (ERK) signaling. These findings suggest that downregulation of Cx43 in patients with depression might contribute to the therapeutic efficacy of antidepressants rather than the pathogenesis of depression.
Collapse
Affiliation(s)
- Nozomi Tokunaga
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Tomoyo Takimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
4
|
Ochi S, Sekiya K, Abe N, Funahashi Y, Kumon H, Yoshino Y, Nishihara T, Boku S, Iga JI, Ueno SI. Neural precursor cells are decreased in the hippocampus of the delayed carbon monoxide encephalopathy rat model. Sci Rep 2021; 11:6244. [PMID: 33737717 PMCID: PMC7973557 DOI: 10.1038/s41598-021-85860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
The pathophysiology of delayed carbon monoxide (CO) encephalopathy remains unclear. In this study, the effects of CO exposure on the dentate gyrus (DG) were investigated in a Wistar rat model by histochemical and molecular methods. Model rats showed significant cognitive impairment in the passive-avoidance test beginning 7 days after CO exposure. Immunohistochemistry showed that compared to the control, the cell number of SRY (sex-determining region Y)-box 2 (SOX2)+/brain lipid binding protein (BLBP)+/glial fibrillary acidic protein (GFAP)+ cells in the DG was significantly less, but the number of SOX2+/GFAP− cells was not, reflecting a decreased number of type 1 and type 2a neural precursor cells. Compared to the control, the numbers of CD11b+ cells and neuron glial antigen 2+ cells were significantly less, but the number of SOX2−/GFAP+ cells was not. Flow cytometry showed that the percent of live microglial cells isolated from the hippocampus in this CO rat model was significantly lower than in controls. Furthermore, mRNA expression of fibroblast growth factor 2 and glial cell-derived neurotrophic factor, which are neurogenic factors, was significantly decreased in that area. We conclude that, in this rat model, there is an association between delayed cognitive impairment with dysregulated adult hippocampal neurogenesis and glial changes in delayed CO encephalopathy.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
5
|
Kinboshi M, Ikeda A, Ohno Y. Role of Astrocytic Inwardly Rectifying Potassium (Kir) 4.1 Channels in Epileptogenesis. Front Neurol 2020; 11:626658. [PMID: 33424762 PMCID: PMC7786246 DOI: 10.3389/fneur.2020.626658] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocytes regulate potassium and glutamate homeostasis via inwardly rectifying potassium (Kir) 4.1 channels in synapses, maintaining normal neural excitability. Numerous studies have shown that dysfunction of astrocytic Kir4.1 channels is involved in epileptogenesis in humans and animal models of epilepsy. Specifically, Kir4.1 channel inhibition by KCNJ10 gene mutation or expressional down-regulation increases the extracellular levels of potassium ions and glutamate in synapses and causes hyperexcitation of neurons. Moreover, recent investigations demonstrated that inhibition of Kir4.1 channels facilitates the expression of brain-derived neurotrophic factor (BDNF), an important modulator of epileptogenesis, in astrocytes. In this review, we summarize the current understanding on the role of astrocytic Kir4.1 channels in epileptogenesis, with a focus on functional and expressional changes in Kir4.1 channels and their regulation of BDNF secretion. We also discuss the potential of Kir4.1 channels as a therapeutic target for the prevention of epilepsy.
Collapse
Affiliation(s)
- Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
6
|
Maruyama S, Boku S, Okazaki S, Kikuyama H, Mizoguchi Y, Monji A, Otsuka I, Sora I, Kanazawa T, Hishimoto A, Yoneda H. ATP and repetitive electric stimulation increases leukemia inhibitory factor expression in astrocytes: A potential role for astrocytes in the action mechanism of electroconvulsive therapy. Psychiatry Clin Neurosci 2020; 74:311-317. [PMID: 32022358 DOI: 10.1111/pcn.12986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
AIM Electroconvulsive therapy (ECT) is effective for psychiatric disorders. However, its action mechanism remains unclear. We previously reported that transcription factor 7 (TCF7) was increased in patients successfully treated with ECT. TCF7 regulates Wnt pathway, which regulates adult hippocampal neurogenesis. Adult hippocampal neurogenesis is involved in the pathophysiology of psychiatric disorders. Astrocytes play a role in adult hippocampal neurogenesis via neurogenic factors. Of astrocyte-derived neurogenic factors, leukemia inhibitory factor (LIF) and fibroblast growth factor 2 (FGF2) activate Wnt pathway. In addition, adenosine triphosphate (ATP), released from excited neurons, activates astrocytes. Therefore, we hypothesized that ECT might increase LIF and/or FGF2 in astrocytes. To test this, we investigated the effects of ATP and electric stimulation (ES) on LIF and FGF2 expressions in astrocytes. METHODS Astrocytes were derived from neonatal mouse forebrain and administered ATP and ES. The mRNA expression was estimated with quantitative reverse-transcription polymerase chain reaction. Protein concentration was measured with ELISA. RESULTS ATP increased LIF, but not FGF2, expression. Multiple ES, but not single, increased LIF expression. Knockdown of P2X2 receptor (P2X2R) attenuated ATP-induced increase of LIF mRNA expression. In contrast, P2X3 and P2X4 receptors intensified it. CONCLUSION P2X2R may mediate ATP-induced LIF expression in astrocytes and multiple ES directly increases LIF expression in astrocytes. Therefore, both ATP/P2X2R and multiple ES-induced increases of LIF expression in astrocytes might mediate the efficacy of ECT on psychiatric disorders. Elucidating detailed mechanisms of ATP/P2X2R and multiple ES-induced LIF expression is expected to result in the identification of new therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Kikuyama
- Department of Psychiatry, Osaka Medical College, Takatsuki, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Saga University Faculty of Medicine, Saga, Japan
| | - Akira Monji
- Department of Psychiatry, Saga University Faculty of Medicine, Saga, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsufumi Kanazawa
- Department of Psychiatry, Osaka Medical College, Takatsuki, Japan.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yoneda
- Department of Psychiatry, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
7
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Suto T, Kato D, Obata H, Saito S. Tropomyosin Receptor Kinase B Receptor Activation in the Locus Coeruleus Restores Impairment of Endogenous Analgesia at a Late Stage Following Nerve Injury in Rats. THE JOURNAL OF PAIN 2018; 20:600-609. [PMID: 30529695 DOI: 10.1016/j.jpain.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
A rat model of neuropathic pain at 6 weeks after spinal nerve ligation (SNL6w) exhibits both mechanical hypersensitivity and impaired noxious stimuli-induced analgesia (NSIA). Repeated treatment with antidepressants can produce antihypersensitivity and restore NSIA. To examine the involvement of a brain-derived neurotrophic factor-mediated mechanism, a tropomyosin receptor kinase B (TrkB) agonist, 7,8-dihydroxyflavone (DHF), was administered to SNL6w rats (5 mg/kg/d for 5 days). Mechanical hypersensitivity was evaluated using the von Frey filament test and paw pressure test. NSIA was examined by measuring the change in the hind paw withdrawal threshold 30 minutes after painful stimulation induced by capsaicin injection into the fore paw. Changes in the concentrations of glutamate and GABA in the locus coeruleus area were measured by in vivo microdialysis. DHF treatment did not affect mechanical hypersensitivity, although it restored NSIA by reducing GABA release in response to the fore paw capsaicin injection. DHF treatment did not alter the baseline concentration of glutamate or GABA. These findings suggest that DHF treatment restored the stimuli-response activity of the locus coeruleus without affecting the tonic activity of the locus coeruleus. The brain-derived neurotrophic factor-TkB signaling is also involved in the NSIA-restoring effect of amitriptyline. PERSPECTIVE: This article demonstrates that repeated treatment with TrkB agonist, DHF, restored endogenous analgesia. Repeated amitriptyline treatment showed similar effect via TrkB-mediated mechanisms, and the effect may be independent from the effect of antihypersensitivity. This effect of TrkB activation is promising for patients with chronic pain with impaired descending inhibition.
Collapse
Affiliation(s)
- Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hideaki Obata
- Department of Anesthesiology and Center for Pain Management, Fukushima Medical University, Fukushima, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
9
|
Ohno Y, Kinboshi M, Shimizu S. Inwardly Rectifying Potassium Channel Kir4.1 as a Novel Modulator of BDNF Expression in Astrocytes. Int J Mol Sci 2018; 19:ijms19113313. [PMID: 30356026 PMCID: PMC6274740 DOI: 10.3390/ijms19113313] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule essential for neural plasticity and development, and is implicated in the pathophysiology of various central nervous system (CNS) disorders. It is now documented that BDNF is synthesized not only in neurons, but also in astrocytes which actively regulate neuronal activities by forming tripartite synapses. Inwardly rectifying potassium (Kir) channel subunit Kir4.1, which is specifically expressed in astrocytes, constructs Kir4.1 and Kir4.1/5.1 channels, and mediates the spatial potassium (K+) buffering action of astrocytes. Recent evidence illustrates that Kir4.1 channels play important roles in bringing about the actions of antidepressant drugs and modulating BDNF expression in astrocytes. Although the precise mechanisms remain to be clarified, it seems likely that inhibition (down-regulation or blockade) of astrocytic Kir4.1 channels attenuates K+ buffering, increases neuronal excitability by elevating extracellular K+ and glutamate, and facilitates BDNF expression. Conversely, activation (up-regulation or opening) of Kir4.1 channels reduces neuronal excitability by lowering extracellular K+ and glutamate, and attenuates BDNF expression. Particularly, the former pathophysiological alterations seem to be important in epileptogenesis and pain sensitization, and the latter in the pathogenesis of depressive disorders. In this article, we review the functions of Kir4.1 channels, with a focus on their regulation of spatial K+ buffering and BDNF expression in astrocytes, and discuss the role of the astrocytic Kir4.1-BDNF system in modulating CNS disorders.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Saki Shimizu
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
10
|
Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72:3-12. [PMID: 28926161 DOI: 10.1111/pcn.12604] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The monoamine hypothesis has been accepted as the most common hypothesis of major depressive disorder (MDD) for a long period because of its simplicity and understandability. Actually, most currently used antidepressants have been considered to act based on the monoamine hypothesis. However, an important problem of the monoamine hypothesis has been pointed out as follows: it fails to explain the latency of response to antidepressants. In addition, many patients with MDD have remained refractory to currently used antidepressants. Therefore, monoamine-alternate hypotheses are required to explain the latency of response to antidepressants. Such hypotheses have been expected to contribute to identifying hopeful new therapeutic targets for MDD. Past studies have revealed that the volume of the hippocampus is decreased in patients with MDD, which is likely caused by the failure of the hypothalamic-pituitary-adrenal axis and following elevation of glucocorticoids. Two hypotheses have been proposed to explain the volume of the hippocampus: (i) the neuroplasticity hypothesis; and (ii) the neurogenesis hypothesis. The neuroplasticity hypothesis explains how the hippocampal volume is decreased by the morphological changes of hippocampal neurons, such as the shortening length of dendrites and the decreased number and density of spines. The neurogenesis hypothesis explains how the hippocampal volume is decreased by the decrease of neurogenesis in the hippocampal dentate gyrus. These hypotheses are able to explain the latency of response to antidepressants. In this review, we first overview how the neuroplasticity and neurogenesis hypotheses have been developed. We then describe the details of these hypotheses.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
11
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
12
|
Collier TJ, Srivastava KR, Justman C, Grammatopoulous T, Hutter-Paier B, Prokesch M, Havas D, Rochet JC, Liu F, Jock K, de Oliveira P, Stirtz GL, Dettmer U, Sortwell CE, Feany MB, Lansbury P, Lapidus L, Paumier KL. Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiol Dis 2017; 106:191-204. [PMID: 28711409 DOI: 10.1016/j.nbd.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/10/2023] Open
Abstract
The pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies. Findings from in vitro aggregation and kinetics assays support the view that NOR inhibits aggregation of α-syn by directly binding to the soluble, monomeric form, and by enhancing reconfiguration of the monomer, inhibits formation of toxic conformations of the protein. We go on to demonstrate that NOR inhibits the accumulation, aggregation and neurotoxicity of α-syn in multiple cell and animal models. These findings suggest that NOR, a compound with established safety and efficacy for treatment of depression, may slow progression of α-syn pathology by directly binding to soluble, native, α-syn, thereby inhibiting pathological aggregation and preserving its normal functions.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, USA.
| | - Kinshuk R Srivastava
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Kevin Jock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Patrícia de Oliveira
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Georgia L Stirtz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Lansbury
- Lysosomal Therapeutics, Inc., Cambridge, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Katrina L Paumier
- Department of Neurology, Washington University, Saint Louis, MO, USA
| |
Collapse
|
13
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
14
|
Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal Models of Maternal Immune Activation in Depression Research. Curr Neuropharmacol 2017; 14:688-704. [PMID: 26666733 PMCID: PMC5050397 DOI: 10.2174/1570159x14666151215095359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/24/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023] Open
Abstract
Abstract: Background Depression and schizophrenia are debilitating mental illnesses with significant socio-economic impact. The high degree of comorbidity between the two disorders, and shared symptoms and risk factors, suggest partly common pathogenic mechanisms. Supported by human and animal studies, maternal immune activation (MIA) has been intimately associated with the development of schizophrenia. However, the link between MIA and depression has remained less clear, in part due to the lack of appropriate animal models. Objective Here we aim to summarize findings obtained from studies using MIA animal models and discuss their relevance for preclinical depression research. Methods Results on molecular, cellular and behavioral phenotypes in MIA animal models were collected by literature search (PubMed) and evaluated for their significance for depression. Results Several reports on offspring depression-related behavioral alterations indicate an involvement of MIA in the development of depression later in life. Depression-related behavioral phenotypes were frequently paralleled by neurogenic and neurotrophic deficits and modulated by several genetic and environmental factors. Conclusion Literature evidence analyzed in this review supports a relevance of MIA as animal model for a specific early life adversity, which may prime an individual for the development of distinct psychopathologies later life. MIA animal models may present a unique tool for the identification of additional exogenous and endogenous factors, which are required for the manifestation of a specific neuropsychiatric disorder, such as depression, later in life. Hereby, novel insights into the molecular mechanisms involved in the pathophysiology of depression may be obtained, supporting the identification of alternative therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
15
|
Kajitani N, Hisaoka-Nakashima K, Okada-Tsuchioka M, Hosoi M, Yokoe T, Morioka N, Nakata Y, Takebayashi M. Fibroblast growth factor 2 mRNA expression evoked by amitriptyline involves extracellular signal-regulated kinase-dependent early growth response 1 production in rat primary cultured astrocytes. J Neurochem 2015; 135:27-37. [DOI: 10.1111/jnc.13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Naoto Kajitani
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Mayu Hosoi
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| | - Toshiki Yokoe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences; Hiroshima University; Minami-ku Hiroshima Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience; Institute for Clinical Research; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
- Department of Psychiatry; National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center; Kure Japan
| |
Collapse
|
16
|
Boku S, Toda H, Nakagawa S, Kato A, Inoue T, Koyama T, Hiroi N, Kusumi I. Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of retinoic acid receptor gene promoter. Biol Psychiatry 2015; 77:335-44. [PMID: 25127741 PMCID: PMC5241093 DOI: 10.1016/j.biopsych.2014.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Early life stress is thought to contribute to psychiatric disorders, but the precise mechanisms underlying this link are poorly understood. As neonatal stress decreases adult hippocampal neurogenesis, which, in turn, functionally contributes to many behavioral phenotypes relevant to psychiatric disorders, we examined how in vivo neonatal maternal separation (NMS) impacts the capacity of adult hippocampal neural precursor cells via epigenetic alterations in vitro. METHODS Rat pups were separated from their dams for 3 hours daily from postnatal day (PND) 2 to PND 14 or were never separated from the dam (as control animals). We isolated adult neural precursor cells from the hippocampal dentate gyrus at PND 56 and assessed rates of proliferation, apoptosis, and differentiation in cell culture. We also evaluated the effect of DNA methylation at the retinoic acid receptor (RAR) promoter stemming from NMS on adult neural precursor cells. RESULTS NMS attenuated neural differentiation of adult neural precursor cells but had no detectible effect on proliferation, apoptosis, or astroglial differentiation. The DNA methyltransferase (DNMT) inhibitor, 5-aza-dC, reversed a reduction by NMS of neural differentiation of adult neural precursor cells. NMS increased DNMT1 expression and decreased expression of RARα. An RARα agonist increased neural differentiation and an antagonist reduced retinoic acid-induced neural differentiation. NMS increased the methylated portion of RARα promoter, and the DNMT inhibitor reversed a reduction by NMS of RARα messenger RNA expression. CONCLUSIONS NMS attenuates the capacity of adult hippocampal neural precursor cells to differentiate into neurons by decreasing expression of RARα through DNMT1-mediated methylation of its promoter.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry, Hokkaido University School of Medicine, Sapporo.
| | | | | | | | | | | | | | | |
Collapse
|