Abstract
GIRK channels control spike frequency in atrial pacemaker cells and inhibitory potentials in neurons. By directly responding to G proteins, PIP2 and Na+, GIRK is under the control of multiple signaling pathways. In this study, the mammalian GIRK2 channel has been purified and reconstituted in planar lipid membranes and effects of Gα, Gβγ, PIP2 and Na+ analyzed. Gβγ and PIP2 must be present simultaneously to activate GIRK2. Na+ is not essential but modulates the effect of Gβγ and PIP2 over physiological concentrations. Gαi1(GTPγS) has no effect, whereas Gαi1(GDP) closes the channel through removal of Gβγ. In the presence of Gβγ, GIRK2 opens as a function of PIP2 mole fraction with Hill coefficient 2.5 and an affinity that poises GIRK2 to respond to natural variations of PIP2 concentration. The dual requirement for Gβγ and PIP2 can help to explain why GIRK2 is activated by Gi/o, but not Gq coupled GPCRs.
DOI:http://dx.doi.org/10.7554/eLife.03671.001
Though every cell in the body is surrounded by a membrane, there are a number of ways that molecules can pass through this membrane to either enter or leave the cell. Proteins from the GIRK family form channels in the membranes of mammalian cells, and when open these channels allow potassium ions to flow through the membrane to control the membrane's voltage.
GIRK channels are found in the heart and in the central nervous system, and can be activated in a variety of ways. Sodium ions and molecules called ‘signaling lipids’ can regulate the activation of GIRK channels. These channels can also be caused to open by G proteins: proteins that are found inside cells and that help to transmit signals from the outside of a cell to the inside. Three G proteins—called Gα, Gβ, and Gγ—work together in a complex that functions a bit like a switch. When switched on, the Gα subunit is separated from the other two subunits (called Gβγ); and both parts can then activate different signaling pathways inside the cell.
The Gβγ subunits and a signaling lipid have been known to regulate the opening of GIRK channels for a number of years, but these events have only been studied in the context of living cells. The specific role of each molecule, and whether the Gα subunit can also regulate the GIRK channels, remains unknown. Now Wang et al. have produced one type of mouse GIRK channel, called GIRK2, in yeast cells, purified this protein, and added it into an artificial membrane. This ‘reconstituted system’ allowed the regulation of a GIRK channel to be investigated under more controlled conditions than in previous experiments.
Wang et al. found that the Gβγ subunits and the signaling lipid both need to be present to activate the GIRK2 channel. Sodium ions were not essential, but promoted further opening when Gβγ and the signaling lipid were already present. When locked in its ‘on’ state, the Gα subunit had no effect on GIRK2, but adding Gα locked in the ‘off’ state closed these channels by removing the Gβγ proteins.
The findings of Wang et al. suggest that it should be possible to use a similar reconstituted system to investigate what allows different G proteins to activate specific signaling pathways.
DOI:http://dx.doi.org/10.7554/eLife.03671.002
Collapse