1
|
Zanin A, Meneghetti G, Menilli L, Tesoriere A, Argenton F, Mognato M. Analysis of Radiation Toxicity in Mammalian Cells Stably Transduced with Mitochondrial Stat3. Int J Mol Sci 2023; 24:8232. [PMID: 37175941 PMCID: PMC10179518 DOI: 10.3390/ijms24098232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (A.Z.); (G.M.); (L.M.); (A.T.); (F.A.)
| |
Collapse
|
2
|
E2F1 Expression and Apoptosis Initiation in Crayfish and Rat Peripheral Neurons and Glial Cells after Axonal Injury. Int J Mol Sci 2022; 23:ijms23084451. [PMID: 35457270 PMCID: PMC9026502 DOI: 10.3390/ijms23084451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrauma is among the main causes of human disability and mortality. The transcription factor E2F1 is one of the key proteins that determine the fate of cells. The involvement of E2F1 in the regulation of survival and death of peripheral nerve cells after axotomy has not been previously studied. We, for the first time, studied axotomy-induced changes in the expression and localization of E2F1 following axonal injury in rats and crayfish. Immunoblotting and immunofluorescence microscopy were used for the analysis of the expression and intracellular localization of E2F1 and its changes after axotomy. To evaluate whether this transcription factor promotes cell apoptosis, we examined the effect of pharmacological inhibition of E2F activity in axotomized rat models. In this work, axotomy caused increased expression of E2F1 as early as 4 h and even 1 h after axotomy of mechanoreceptor neurons and ganglia of crayfish ventral nerve cord (VNC), as well as rat dorsal root ganglia (DRG). The level of E2F1 expression increased both in the cytoplasm and the nuclei of neurons. Pharmacological inhibition of E2F demonstrated a pronounced neuroprotective activity against axotomized DRGs. E2F1 and downstream targets could be considered promising molecular targets for the development of potential neuroprotective agents.
Collapse
|
3
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
4
|
Sun CY, Zhang XP, Wang W. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Int J Mol Sci 2019; 20:ijms20194768. [PMID: 31561425 PMCID: PMC6801623 DOI: 10.3390/ijms20194768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
p53-targeted microRNAs (miRNAs) markedly affect cellular response to DNA damage. These miRNAs may contribute to either cell cycle arrest or apoptosis induction. However, how these miRNAs coordinate to modulate the decision between cell survival and death remains less understood. Here, we developed an integrated model of p53 signaling network to investigate how p53-targeted miR-192 and miR-22 modulate cellular outcome in response to DNA damage. By numerical simulations, we found that p53 is activated progressively depending on the extent of DNA damage. Upon moderate damage, p53 rises to medium levels and induces miR-192 to promote its own activation, facilitating p21 induction and cell cycle arrest. Upon severe damage, p53 reaches high levels and is fully activated due to phosphatase and tensin homolog (PTEN) induction. As a result, it transactivates miR-22 to repress p21 expression and activate E2F1, resulting in apoptosis. Therefore, miR-192 promotes primary activation of p53, while miR-22 promotes apoptosis by downregulating p21. This work may advance the understanding of the mechanism for cell fate decision between life and death by p53-inducible miRNAs.
Collapse
Affiliation(s)
- Cheng-Yuan Sun
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Zhao H, Duan ZH. Cancer Genetic Network Inference Using Gaussian Graphical Models. Bioinform Biol Insights 2019; 13:1177932219839402. [PMID: 31007526 PMCID: PMC6456846 DOI: 10.1177/1177932219839402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
The Cancer Genome Atlas (TCGA) provides a rich resource that can be used to
understand how genes interact in cancer cells and has collected RNA-Seq gene
expression data for many types of human cancer. However, mining the data to
uncover the hidden gene-interaction patterns remains a challenge. Gaussian
graphical model (GGM) is often used to learn genetic networks because it defines
an undirected graphical structure, revealing the conditional dependences of
genes. In this study, we focus on inferring gene interactions in 15 specific
types of human cancer using RNA-Seq expression data and GGM with graphical
lasso. We take advantage of the corresponding Kyoto Encyclopedia of Genes and
Genomes pathway maps to define the subsets of related genes. RNA-Seq expression
levels of the subsets of genes in solid cancerous tumor and normal tissues were
extracted from TCGA. The gene expression data sets were cleaned and formatted,
and the genetic network corresponding to each cancer type was then inferred
using GGM with graphical lasso. The inferred networks reveal stable conditional
dependences among the genes at the expression level and confirm the essential
roles played by the genes that encode proteins involved in the two key signaling
pathway phosphoinositide 3-kinase (PI3K)/AKT/mTOR and Ras/Raf/MEK/ERK in human
carcinogenesis. These stable dependences elucidate the expression level
interactions among the genes that are implicated in many different human
cancers. The inferred genetic networks were examined to further identify and
characterize a collection of gene interactions that are unique to cancer. The
cross-cancer genetic interactions revealed from our study provide another set of
knowledge for cancer biologists to propose strong hypotheses, so further
biological investigations can be conducted effectively.
Collapse
Affiliation(s)
- Haitao Zhao
- Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Computer Science, The University of Akron, Akron, OH, USA
| | - Zhong-Hui Duan
- Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Computer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
6
|
Düzenli U, Altun Z, Olgun Y, Aktaş S, Pamukoğlu A, Çetinayak HO, Bayrak AF, Olgun L. Role of N-acetyl cysteine and acetyl-l-carnitine combination treatment on DNA-damage-related genes induced by radiation in HEI-OC1 cells. Int J Radiat Biol 2019; 95:298-306. [PMID: 30496017 DOI: 10.1080/09553002.2019.1547847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE The aim of the present study was to evaluate the effect of acetyl-l-carnitine (ALC) and N-acetyl cysteine (NAC) on ionizing radiation (IR)-induced cytotoxicity and change in DNA damage-related genes in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. METHODS HEI-OC1 cells were irradiated with 5 Gy radiation and treated by eight combinations of NAC and/or ALC: control, NAC, ALC, IR, NAC + IR, ALC + NAC, ALC + IR, and ALC + NAC + IR. Cell viability, apoptotic cell death, and DNA damage were measured at the 72nd hour. Eighty-four IR-induced DNA-damage-related genes were determined by RT-PCR gene array and >10-fold changes were considered significant. RESULTS IR decreased cell viability by about 50% at 72 hours of incubation. In particular, the ALC and/or NAC combination before IR protected the HEI-OC1 cells (p < .05). Single and combination treatment prior to IR led to lower apoptotic cell death (p < .05). There was a significant lower DNA damage in ALC + NAC + IR group compared to IR group (p < .05). Expressions of Brca2, Xpc, Mlh3, Rad51, Xrcc2, Hus1, Rad9a, Cdkn1a, Gadd45a which are the DNA-repair genes were found to be significantly higher in NAC + ALC + IR group than those in individual treatment of ALC or NAC. CONCLUSIONS ALC and/or NAC treatment prior to IR led to higher cell viability and lower apoptotic cell damage compared to the IR group. The results of the study show that the ALC + NAC combination treatment inhibits DNA damage and induces DNA-repair genes to repair radiation damage, and this combination treatment is more effective against radiation-induced DNA damage than NAC or ALC therapy individually.
Collapse
Affiliation(s)
- Ufuk Düzenli
- a Department of Otorhinolaryngology , Bozyaka Teaching and Research Hospital , Izmir , Turkey
| | - Zekiye Altun
- b Department of Basic Oncology , Dokuz Eylül University Institute of Oncology , Izmir , Turkey
| | - Yüksel Olgun
- c Department of Otorhinolaryngology, School of Medicine , Dokuz Eylül University , Izmir , Turkey
| | - Safiye Aktaş
- b Department of Basic Oncology , Dokuz Eylül University Institute of Oncology , Izmir , Turkey
| | - Ayça Pamukoğlu
- b Department of Basic Oncology , Dokuz Eylül University Institute of Oncology , Izmir , Turkey
| | - Hasan Oğuz Çetinayak
- d Department of Radiation Oncology, Faculty of Medicine , Dokuz Eylül University , Izmir , Turkey
| | - Asuman Feda Bayrak
- a Department of Otorhinolaryngology , Bozyaka Teaching and Research Hospital , Izmir , Turkey
| | - Levent Olgun
- a Department of Otorhinolaryngology , Bozyaka Teaching and Research Hospital , Izmir , Turkey
| |
Collapse
|
7
|
Lacombe J, Brooks C, Hu C, Menashi E, Korn R, Yang F, Zenhausern F. Analysis of Saliva Gene Expression during Head and Neck Cancer Radiotherapy: A Pilot Study. Radiat Res 2017; 188:75-81. [PMID: 28504589 DOI: 10.1667/rr14707.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saliva, a biological fluid, is a promising candidate for novel approaches to prognosis, clinical diagnosis, monitoring and management of patients with both oral and systemic diseases. However, to date, saliva has not been widely investigated as a biomarker for radiation exposure. Since white blood cells are also present in saliva, it should theoretically be possible to investigate the transcriptional biomarkers of radiation exposure classically studied in whole blood. Therefore, we collected whole blood and saliva samples from eight head and neck cancer patients before the start of radiation treatment, at mid-treatment and after treatment. We then used a panel of five genes: BAX, BBC3, CDKN1A, DDB2 and MDM2, designated for assessing radiation dose in whole blood to evaluate gene expression changes that can occur during radiotherapy. The results revealed that the expression of the five genes did not change in whole blood. However, in saliva, CDKN1A and DDB2 were significantly overexpressed at the end, compared to the start, of radiotherapy, and MDM2 was significantly underexpressed between mid-treatment and at the end of treatment. Interestingly, CDKN1A and DDB2 expressions also showed an increasing monotonic relationship with total radiation dose received during radiotherapy. To our knowledge, these results show for the first time the ability to detect gene expression changes in saliva after head and neck cancer radiotherapy, and pave the way for further promising studies validating saliva as a minimally invasive means of biofluid collection to directly measure radiation dose escalation during treatment.
Collapse
Affiliation(s)
- Jerome Lacombe
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226
| | - Carla Brooks
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226
| | - Chengcheng Hu
- b Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona 85004
| | | | - Ronald Korn
- c Honor Health Research Institute, Scottsdale, Arizona 85258
| | - Farley Yang
- c Honor Health Research Institute, Scottsdale, Arizona 85258.,d Arizona Center for Cancer Care, Honor Health, Scottsdale, Arizona 85251
| | - Frederic Zenhausern
- a Center for Applied NanoBioscience and Medicine, University of Arizona, Chandler, Arizona 85226.,c Honor Health Research Institute, Scottsdale, Arizona 85258.,e Translational Genomics Research Institute, Phoenix, Arizona 85004
| |
Collapse
|
8
|
p53-Mediated oligodendrocyte apoptosis initiates demyelination after compressed spinal cord injury by enhancing ER-mitochondria interaction and E2F1 expression. Neurosci Lett 2017; 644:55-61. [DOI: 10.1016/j.neulet.2017.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/12/2017] [Accepted: 02/14/2017] [Indexed: 11/21/2022]
|
9
|
Forestier A, Douki T, De Rosa V, Béal D, Rachidi W. Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the Over-Expression of the Nucleotide Excision Repair Proteins DDB2 and XPC. Int J Mol Sci 2015; 16:17422-44. [PMID: 26263968 PMCID: PMC4581200 DOI: 10.3390/ijms160817422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of oxidative DNA damage, particularly Base Excision Repair (BER), impairment is often associated with Alzheimer’s disease pathology. Here, we aimed at investigating the complete Nucleotide Excision Repair (NER), a DNA repair pathway involved in the removal of bulky DNA adducts, status in an Alzheimer-like cell line. The level of DNA damage was quantified using mass spectrometry, NER gene expression was assessed by qPCR, and the NER protein activity was analysed through a modified version of the COMET assay. Interestingly, we found that in the presence of the Amyloid β peptide (Aβ), NER factors were upregulated at the mRNA level and that NER capacities were also specifically increased following oxidative stress. Surprisingly, NER capacities were not differentially improved following a typical NER-triggering of ultraviolet C (UVC) stress. Oxidative stress generates a differential and specific DNA damage response in the presence of Aβ. We hypothesized that the release of NER components such as DNA damage binding protein 2 (DDB2) and Xeroderma Pigmentosum complementation group C protein (XPC) following oxidative stress might putatively involve their apoptotic role rather than DNA repair function.
Collapse
Affiliation(s)
- Anne Forestier
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Viviana De Rosa
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - David Béal
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Walid Rachidi
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| |
Collapse
|
10
|
Tiwari P, Sahay S, Pandey M, Qadri SSYH, Gupta KP. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events. Chem Biol Interact 2014; 226:1-11. [PMID: 25478867 DOI: 10.1016/j.cbi.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/11/2014] [Accepted: 11/25/2014] [Indexed: 12/30/2022]
Abstract
We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.
Collapse
Affiliation(s)
- Prakash Tiwari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Satya Sahay
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Manuraj Pandey
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Syed S Y H Qadri
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India; Pathology Division, National Institute of Nutrition, Hyderabad, India
| | - Krishna P Gupta
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India.
| |
Collapse
|