1
|
Serageldin MA, El-Bassiouny NA, El-Kerm Y, Aly RG, Helmy MW, El-Mas MM, Kassem AB. A randomized controlled study of neoadjuvant metformin with chemotherapy in nondiabetic breast cancer women: The METNEO study. Br J Clin Pharmacol 2024; 90:3160-3175. [PMID: 39113190 DOI: 10.1111/bcp.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 11/29/2024] Open
Abstract
AIMS Clinical data demonstrate that metformin exhibits antiproliferative, proapoptotic and antimetastatic actions. Here, correlative molecular studies were undertaken to determine the roles of transmembrane tumour necrosis factor-related apoptosis-inducing ligand death receptors (DRs) and CD133, a glycoprotein biomarker of breast cancer (BC) stem cells, in the advantageous action of metformin on pathological and clinical outcomes in BC patients on neoadjuvant chemotherapy. METHODS We randomly assigned 70 nondiabetic BC patients in a 1:1 ratio to either neoadjuvant AC-T chemotherapy (4 cycles of adriamycin 60 mg/m2 and cyclophosphamide 600 mg/m2, followed by 12 cycles of weekly paclitaxel 80 mg/m2) or AC-T with adjunct metformin (850 mg twice/day). The expressions of DR4, DR5 and CD133 were quantified in excised tissue samples with residual tumour cells. RESULTS The overall clinical response (odds ratio: 22.67 [2.77-185.18], P = .004), breast-conserving surgery (odds ratio: 3.67 [1.303-10.321], P = .014) and pathological complete response (β = 2.49 ± 1.13 [0.274-4.712], P = .028) rates were significantly improved in the metformin arm. Tissues obtained from the metformin arm had upregulated mRNA expression of DR4 (Mean delta cycle thresholds ± standard error of the mean: 2.68 ± 0.25 vs. 4.87 ± 0.53, P = .0003) and DR5 (0.21 ± 0.25 vs. 4.29 ± 0.95, P = .0004) compared to control arm. The enhanced DR expression negatively correlated with that of CD133 + BC stem cells, which was significantly reduced by metformin at both cytoplasmic/membranous (43.48 vs. 100.00%, P < .0001) and nuclear sites (4.35 vs. 95.00%, P < .0001). CONCLUSION Metformin improves clinical and pathological responses to neoadjuvant AC-T chemotherapy in BC via prompting directionally opposite changes in DRs (increments) and CD133 + (decrements) expressions. This study was registered in ClinicalTrials.gov (registration number: NCT04170465, https://clinicaltrials.gov/ct2/show/NCT04170465).
Collapse
Affiliation(s)
- Manar A Serageldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Yasser El-Kerm
- Oncology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Amira B Kassem
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
3
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
4
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
5
|
Ruan G, Wu F, Shi D, Sun H, Wang F, Xu C. Metformin: update on mechanisms of action on liver diseases. Front Nutr 2023; 10:1327814. [PMID: 38192642 PMCID: PMC10773879 DOI: 10.3389/fnut.2023.1327814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-β1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.
Collapse
Affiliation(s)
- Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangquan Wu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Liu J, Zhao J, Qiao X. Research Progress of Metformin in the Treatment of Oral Squamous Cell Carcinoma. Endocrinology 2023; 164:bqad139. [PMID: 37738154 DOI: 10.1210/endocr/bqad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a high mortality, posing a great threat to both human physical and mental health. With the advancement of scientific research, a variety of cancer therapies have been used for OSCC treatment. However, the prognosis of OSCC shows no significant improvement. Metformin has been recognized as the first-line drug for the treatment of diabetes, and recent studies have shown that metformin has a remarkable suppressive effect on tumor progression. Metformin can not only affect the energy metabolism of tumor cells but also play an antitumor role by modulating the tumor microenvironment and cancer stem cells. In this review, the molecular mechanism of metformin and its anticancer mechanism in OSCC are summarized. In addition, this article summarizes the side effects of metformin and the future prospects of its application in the treatment of OSCC.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Jing Zhao
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Xue Qiao
- Department of Central Laboratory, School and Hospital of Stomatology, Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, Liaoning 110002, China
| |
Collapse
|
7
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
8
|
Roy S, Zhao Y, Yuan YC, Goel A. Metformin and ICG-001 Act Synergistically to Abrogate Cancer Stem Cells-Mediated Chemoresistance in Colorectal Cancer by Promoting Apoptosis and Autophagy. Cancers (Basel) 2022; 14:1281. [PMID: 35267590 PMCID: PMC8908991 DOI: 10.3390/cancers14051281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most frequently diagnosed cancer in the United States. The current treatment regimens for CRC include surgery followed by 5FU-based chemotherapy. Cancer stem-like cells (CSCs) have been implicated in 5FU-mediated chemoresistance, which leads to poor prognosis. In this study, we used metformin along with ICG-001, a Wnt signaling inhibitor, to abrogate CSC-mediated chemoresistance in CRC. We observed that 5FU-resistant (5FUR) CRC cells exhibited increased expression of CSC markers and enhanced spheroid formation. Genome-wide transcriptomic profiling analysis revealed that Wnt signaling, colorectal cancer metastasis signaling, etc., were enriched in 5FUR CRC cells. Accordingly, selective targeting of Wnt signaling using ICG-001 along with metformin abrogated CSC-mediated chemoresistance by decreasing the expression of CSC markers and promoting autophagy and apoptosis in a synergistic manner. We also observed that metformin and ICG-001 exhibited anti-tumor activity in CRC patient-derived tumor organoids. In conclusion, our study highlights that metformin and ICG-001 act synergistically and can be used as part of a therapeutic strategy to overcome 5FU-mediated therapeutic resistance in CRC.
Collapse
Affiliation(s)
- Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; (S.R.); (Y.Z.)
| | - Yinghui Zhao
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; (S.R.); (Y.Z.)
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA;
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; (S.R.); (Y.Z.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Singh-Makkar S, Pandav K, Hathaway D, Paul T, Youssef P. Multidimensional mechanisms of metformin in cancer treatment. TUMORI JOURNAL 2021; 108:111-118. [PMID: 34139918 DOI: 10.1177/03008916211023548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metformin has been in clinical use for more than half a century, yet its molecular mechanism of action is not entirely understood. Metformin has been shown to have antiproliferative and synergistic effects on various types of cancers. The anticancer effects of metformin are potentially applicable to both diabetic and nondiabetic patients. Areas of ongoing investigation focus on metformin's ability to activate adenosine monophosphate kinase (AMPK), in addition to its effect on Myc mRNA, monocarboxylate transporter 1 (MCT1), hypoxia-inducible factor 1 (HIF1), mammalian target of rapamycin (mTOR), and human epidermal growth factor receptor 2 (HER2). Additional anticancer effects are exhibited by acting on liver kinase B1 (LKB1), CREB-regulated transcription coactivator 2 (CRTC2), nitric oxide, and reactive oxygen species. Further investigation will be focused on elucidating metformin's metal-binding properties and how they may be harnessed for their anticancer effect. The acquired knowledge about metformin properties has expanded the number of targets for drug discovery such as microRNA, hexokinase, adenylate cyclase, transcription factors, various cyclins, and copper. In order to design anticancer drugs that mimic metformin's mechanism of action, binding assay studies must be conducted to fully understand and utilize the AMPK-dependent and independent mechanisms. Metformin's complex mechanisms that can potentially make this drug a multifaceted therapy targeting tumorigenesis in addition to information from ongoing clinical trials implicate that metformin can be a potential chemotherapeutic drug or adjuvant that could prove to be vital to future strategies against several types of cancer.
Collapse
Affiliation(s)
- Sarabjot Singh-Makkar
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Donald Hathaway
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Trissa Paul
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, FL, USA
| | - Pamela Youssef
- Neuroscience Department, Larkin University, Miami, FL, USA
| |
Collapse
|
10
|
Cunha Júnior AD, Bragagnoli AC, Costa FO, Carvalheira JBC. Repurposing metformin for the treatment of gastrointestinal cancer. World J Gastroenterol 2021; 27:1883-1904. [PMID: 34007128 PMCID: PMC8108031 DOI: 10.3748/wjg.v27.i17.1883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus type 2 and cancer share many risk factors. The pleiotropic insulin-dependent and insulin-independent effects of metformin might inhibit pathways that are frequently amplified in neoplastic tissue. Particularly, modulation of inflammation, metabolism, and cell cycle arrest are potential therapeutic cancer targets utilized by metformin to boost the anti-cancer effects of chemotherapy. Studies in vitro and in vivo models have demonstrated the potential of metformin as a chemo- and radiosensitizer, besides its chemopreventive and direct therapeutic activity in digestive system (DS) tumors. Hence, these aspects have been considered in many cancer clinical trials. Case-control and cohort studies and associated meta-analyses have evaluated DS cancer risk and metformin usage, especially in colorectal cancer, pancreatic cancer, and hepatocellular carcinoma. Most clinical studies have demonstrated the protective role of metformin in the risk for DS cancers and survival rates. On the other hand, the ability of metformin to enhance the actions of chemotherapy for gastric and biliary cancers is yet to be investigated. This article reviews the current findings on the anti-cancer mechanisms of metformin and its apparatus from pre-clinical and ongoing studies in DS malignancies.
Collapse
Affiliation(s)
- Ademar Dantas Cunha Júnior
- Department of Internal Medicine, Division of Oncology, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | | - Felipe Osório Costa
- Department of Internal Medicine, Division of Oncology, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | |
Collapse
|
11
|
Li C, Liu JY, Jiang D, Qiu M. Expression and prognostic value of epithelial-to-mesenchymal transition and cancer stem cellmarkersin primary lesions and liver metastases of colorectal cancers. Oncol Lett 2021; 22:499. [PMID: 33981361 PMCID: PMC8108244 DOI: 10.3892/ol.2021.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/22/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) and epithelial mesenchymal transition (EMT) markers are considered useful indicators associated with metastasis and prognosis of colorectal cancers (CRCs). However, only a few studies have focused on the expression of these useful markers in metastases. Metastasectomy is widely used in advanced CRCs, and thus the postoperative prognostic factors are worth investigating. The present study investigated the consistency and differences of target proteins between primary and metastatic lesions of colorectal cancer, and discussed the prognostic indicators following resection of colorectal liver metastases. Clinical data of 56 patients with liver metastases from colorectal cancer were collected and the expression levels of target proteins (Ki-67, CD133, CD44, Snail, E-cadherin and β-catenin) were detected in primary tumor and matched liver metastases via immunohistochemistry analysis. Paired comparison between both tissue types was performed. The prognostic values of the target proteins for resectable colorectal cancer liver metastases were assessed. No significant differences were observed between the primary tissues and metastatic tissues. The consistency rates of these protein expression levels ranged from 51.8-78.6%. The maximum diameter of the liver metastases was <5 cm. Low Snail expression in metastases was associated with a longer overall survival (OS) time following resection of colorectal liver metastases. Furthermore, N0 stage and low carcinoembryonic antigen levels were associated with a longer progression-free survival time. Notably, no significant differences were observed in expression levels of the target proteins between the primary tumors and liver metastases. Taken together, the results of the present study suggest that Snail expression in liver metastases may be used as a novel independent prognostic factor for OS following resection of colorectal liver metastases.
Collapse
Affiliation(s)
- Cong Li
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Radioncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Ji-Yan Liu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Jiang
- Department of Pathology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Qiu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Jiang S, Lu Q. A new contribution for an old drug: Prospect of metformin in colorectal oncotherapy. J Cancer Res Ther 2021; 17:1608-1617. [PMID: 35381729 DOI: 10.4103/jcrt.jcrt_1824_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
14
|
Fatehi-Agdam M, Vatankhah MA, Panahizadeh R, Jeddi F, Najafzadeh N. Efficacy of Metformin and Chemotherapeutic Agents on the Inhibition of Colony Formation and Shh/Gli1 Pathway: Metformin/Docetaxel Versus Metformin/5-Fluorouracil. Drug Res (Stuttg) 2021; 71:17-25. [PMID: 32987433 DOI: 10.1055/a-1248-9008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric cancer is a common gastrointestinal cancer characterized by poor prognosis and chemoresistance. Docetaxel and 5-fluorouracil (5-FU) are frequently used for the treatment of gastric cancer. Despite their potent anti-cancer effects, chemoresistance occurs in metastatic gastric cancer. Metformin, a popular anti-diabetic drug, has been proven to have potent anticancer effects on gastrointestinal cancers. Here, we aim to improve this chemotherapy agents' efficacy by pretreatment with metformin. METHODS The AGS gastric cancer cell line were pretreated with three different sub-toxic concentration of metformin and then treated with various concentrations of 5-FU and docetaxel.The anticancer effects of the combination of metformin with the chemotherapy agents were determined using clonogenic assay and DAPi staining. We used real-time PCR to evaluate Gli1, Gli2, and TWIST1 mRNA expression levels in the gastric cancer cells. Also, the expression of the Shh protein was assessed using immunocytochemistry. RESULTS Here, we found that metformin sensitized the gastric cancer cells to chemotherapy. The combination treatments were more effective in reducing the number of cancer colonies compared to 5-FU or docetaxel alone. The combination of metformin with 5-FU or docetaxel significantly reduced the number of cells expressing the Shh protein compared to the 5-FU alone or docetaxel alone. Interestingly, we found that the combination of metformin with docetaxel significantly down-regulated the mRNA levels of Gli1, Gli2, and TWIST1 in the AGS gastric cancer cell line compared to docetaxel alone. CONCLUSION Overall, our data strongly support an important role for metformin as an enhancer of the efficacy of chemotherapeutic agents against gastric cancer.
Collapse
Affiliation(s)
- Maryam Fatehi-Agdam
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil
| | - Mohammad Amin Vatankhah
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil
| | - Reza Panahizadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil
| | - Farhad Jeddi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil
| |
Collapse
|
15
|
Sang J, Tang R, Yang M, Sun Q. Metformin Inhibited Proliferation and Metastasis of Colorectal Cancer and presented a Synergistic Effect on 5-FU. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9312149. [PMID: 32851092 PMCID: PMC7439187 DOI: 10.1155/2020/9312149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to investigate the effect of metformin or the combination of metformin and 5-FU on the growth and metastasis of colorectal cancer (CRC). For the in vitro experiments, HCT 116 and SW1463 cell lines were treated with metformin or the combination of metformin and 5-FU. Cell proliferation and invasion were analyzed by CCK-8, colony formation, and transwell assay, respectively. For the in vivo experiments, the CRC xenograft nude mice model was used to observe the effects of metformin or combined with 5-FU on tumor growth and metastasis. Metformin significantly inhibited the proliferation and invasion of HCT116 and SW1463 cells in vitro, which showed synergetic effects to 5-FU. In CRC xenograft nude mice, metformin alone and metformin combined with 5-FU treatment significantly inhibited tumor cell proliferation and tumor metastasis. In summary, metformin played an inhibitory role in the proliferation and metastasis of CRC and had a synergistic effect with 5-FU. Metformin may be a potentially effective anti-metastatic drug or an anticancer adjuvant agent for treating CRC.
Collapse
Affiliation(s)
- Jing Sang
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
- Department of Pathology, Tai'an Central Hospital, Tai'an 271000, China
| | - Ruixue Tang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Min Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Qing Sun
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| |
Collapse
|
16
|
Madka V, Kumar G, Pathuri G, Zhang Y, Lightfoot S, Asch AS, Mohammed A, Steele VE, Rao CV. Bisphosphonates Zometa and Fosamax Synergize with Metformin to Prevent AOM-Induced Colon Cancer in F344 Rat Model. Cancer Prev Res (Phila) 2020; 13:185-194. [PMID: 31699708 PMCID: PMC7007371 DOI: 10.1158/1940-6207.capr-19-0265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Recent observational studies suggest that bisphosphonates (BP) and antidiabetic drugs are associated with colorectal cancer risk reduction. Hence, we evaluated the colorectal cancer preventive effects of BPs (zometa and fosamax), individually and when combined with metformin, in azoxymethane-induced rat colon cancer model. Rat (30/group) were randomized and treated subcutaneously with azoxymethane to induce colorectal cancer. Dietary intervention with zometa or fosamax (0, 20, or 100 ppm) or metformin (1,000 ppm) or the combinations (zometa/fosamax 20 ppm plus metformin 1,000 ppm) began 4 weeks after azoxymethane treatment, at premalignant lesions stage. Rats were killed 40 weeks post drug intervention to assess colorectal cancer preventive efficacy. Dietary zometa (20 ppm) inhibited noninvasive adenocarcinomas multiplicity by 37% (P < 0.03) when compared with control diet fed group. Fosamax at 20 ppm and 100 ppm significantly reduced adenocarcinoma incidence (P < 0.005) and inhibited the noninvasive adenocarcinoma multiplicities by 43.8% (P < 0.009) and 60.8% (P < 0.004), respectively, compared with the group fed control diet. At 1,000 ppm dose, metformin failed to suppress colon adenocarcinoma formation. However, the lower dose combinations of zometa or fosamax with metformin resulted in significant inhibition of noninvasive adenocarcinoma by 48% (P < 0.006) and 64% (P < 0.0002), and invasive adenocarcinoma by 49% (P < 0.0005) and 38% (P < 0.006), respectively. Biomarker analysis of combination drug-treated tumors showed a decrease in cell proliferation with increased apoptosis when compared with untreated tumors. Overall, our results suggest that the combination of low doses of zometa or fosamax with metformin showed synergistic effect and significantly inhibited colon adenocarcinoma incidence and multiplicity.
Collapse
Affiliation(s)
- Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Adam S Asch
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, Rockville, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
17
|
Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res 2019; 38:491. [PMID: 31831021 PMCID: PMC6909457 DOI: 10.1186/s13046-019-1495-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Growing evidence showed the increased prevalence of cancer incidents, particularly colorectal cancer, among type 2 diabetic mellitus patients. Antidiabetic medications such as, insulin, sulfonylureas, dipeptyl peptidase (DPP) 4 inhibitors and glucose-dependent insulinotropic peptide (GLP-1) analogues increased the additional risk of different cancers to diabetic patients. Conversely, metformin has drawn attention among physicians and researchers since its use as antidiabetic drug exhibited beneficial effect in the prevention and treatment of cancer in diabetic patients as well as an independent anticancer drug. This review aims to provide the comprehensive information on the use of metformin at preclinical and clinical stages among colorectal cancer patients. We highlight the efficacy of metformin as an anti-proliferative, chemopreventive, apoptosis inducing agent, adjuvant, and radio-chemosensitizer in various colorectal cancer models. This multifarious effects of metformin is largely attributed to its capability in modulating upstream and downstream molecular targets involved in apoptosis, autophagy, cell cycle, oxidative stress, inflammation, metabolic homeostasis, and epigenetic regulation. Moreover, the review highlights metformin intake and colorectal cancer risk based on different clinical and epidemiologic results from different gender and specific population background among diabetic and non-diabetic patients. The improved understanding of metformin as a potential chemotherapeutic drug or as neo-adjuvant will provide better information for it to be used globally as an affordable, well-tolerated, and effective anticancer agent for colorectal cancer.
Collapse
Affiliation(s)
- Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205 Bangladesh
- Health Med Science Research Limited, 3/1 Block F, Lalmatia, Mohammadpur, Dhaka, 1207 Bangladesh
| | - Jin-Rong Zhou
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
18
|
Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep 2019; 46:6629-6645. [PMID: 31486978 DOI: 10.1007/s11033-019-05058-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC) is the fourth most common cause of death among all cancers. Poor prognosis of PC may be caused by a prevalence of cancer stem cells (CSCs). CSCs are a population of cancer cells showing stem cell-like characteristics. CSCs have the ability to self-renew and may initiate tumorigenesis. PC CSCs express markers such as CD133, CD24, CD44, DCLK1, CXCR4, ESA, Oct4 and ABCB1. There is a wide complexity of interaction and relationships between CSC markers in PC. These markers are negative prognostic factors and are connected with tumor recurrence and clinical progression. Additionally, PC CSCs are resistant to treatment with gemcitabine. Thus, most current therapies for PC are ineffective. Numerous studies have shown, that targeting of these proteins may increase both disease-free and overall survival in PC.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
- Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland
| |
Collapse
|
19
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
20
|
Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2019; 76:3383-3406. [PMID: 31087119 PMCID: PMC11105507 DOI: 10.1007/s00018-019-03134-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Emergence of novel treatment modalities provides effective therapeutic options, apart from conventional cytotoxic chemotherapy, to fight against colorectal cancer. Unfortunately, drug resistance remains a huge challenge in clinics, leading to invariable occurrence of disease progression after treatment initiation. While novel drug development is unfavorable in terms of time frame and costs, drug repurposing is one of the promising strategies to combat resistance. This approach refers to the application of clinically available drugs to treat a different disease. With the well-established safety profile and optimal dosing of these approved drugs, their combination with current cancer therapy is suggested to provide an economical, safe and efficacious approach to overcome drug resistance and prolong patient survival. Here, we review both preclinical and clinical efficacy, as well as cellular mechanisms, of some extensively studied repurposed drugs, including non-steroidal anti-inflammatory drugs, statins, metformin, chloroquine, disulfiram, niclosamide, zoledronic acid and angiotensin receptor blockers. The three major treatment modalities in the management of colorectal cancer, namely classical cytotoxic chemotherapy, molecular targeted therapy and immunotherapy, are covered in this review.
Collapse
Affiliation(s)
- Winnie Fong
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K W To
- Faculty of Medicine, School of Pharmacy, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
21
|
Yang IP, Miao ZF, Huang CW, Tsai HL, Yeh YS, Su WC, Chang TK, Chang SF, Wang JY. High blood sugar levels but not diabetes mellitus significantly enhance oxaliplatin chemoresistance in patients with stage III colorectal cancer receiving adjuvant FOLFOX6 chemotherapy. Ther Adv Med Oncol 2019; 11:1758835919866964. [PMID: 31467597 PMCID: PMC6704420 DOI: 10.1177/1758835919866964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence of type 2 diabetes mellitus (DM) among patients with colorectal cancer (CRC) is becoming a serious public health concern worldwide. FOLFOX4 chemotherapy is one of the most widely used adjuvant therapies in patients with stage III colon cancer after surgical resection. However, chemotherapy resistance is associated with a poor prognosis. The prognostic impact of high blood sugar levels on oxaliplatin resistance in CRC patients is an unexplored topic. METHODS In total, 157 patients with stage III CRC were classified according to their fasting blood sugar level (⩾126 or <126 mg/dl). Clinicopathological features and oxaliplatin chemoresistance/survival outcome of the two groups were compared. In vitro cell proliferation assay was performed through d-(+)-glucose administration. RESULTS Multivariate analysis results revealed that high blood sugar level was a significantly independent prognostic factor of disease-free survival and overall survival (both p < 0.05), but not DM history. After metformin administration, enhanced proliferation of CRC cells (HT-29, HCT-116, SW480, and SW620) with d-(+)-glucose administration could be reversed and oxaliplatin chemosensitivity considerably increased (p < 0.05). Furthermore, phosphorylation of two glycolysis-related target proteins, SMAD3 and MYC, notably increased under high glucose concentration. CONCLUSIONS Hyperglycemia can affect clinical outcomes in stage III CRC patients receiving adjuvant chemotherapy, and the mechanism underlying oxaliplatin resistance is possibly associated with increased phosphorylation of SMAD3 and MYC and upregulation of EHMT2 expression.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Nursing, Shu-Zen College of
Medicine and Management, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of
Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Division of Trauma and Surgical Critical Care,
Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine,
College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Se-fen Chang
- Department of Nursing, Kaohsiung Medical
University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of
Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine,
College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical
University, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Courtois S, Lehours P, Bessède E. The therapeutic potential of metformin in gastric cancer. Gastric Cancer 2019; 22:653-662. [PMID: 30900101 DOI: 10.1007/s10120-019-00952-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Metformin is a biguanide molecule used since 1957 to treat type 2 diabetes patients. In addition to its hypoglycemic effects, epidemiological studies have shown that metformin can be associated with a decrease in cancer development risk in diabetic populations. Thus, since 2005 this molecule is largely studied for its antitumoural properties in different types of cancer. The potential antitumoural effect of metformin in gastric cancer has been poorly studied. Here, we detailed the different described mechanisms implicated in the antitumoural effect of metformin in gastric cancer, from the signalling pathways to the functional effects on gastric cancer cell lines and gastric cancer stem cells.
Collapse
Affiliation(s)
- Sarah Courtois
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Bort A, Sánchez BG, Mateos-Gómez PA, Vara-Ciruelos D, Rodríguez-Henche N, Díaz-Laviada I. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib. Mol Oncol 2019; 13:1311-1331. [PMID: 30959553 PMCID: PMC6487713 DOI: 10.1002/1878-0261.12488] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. HCC treatment is hindered by the frequent emergence of chemoresistance to the multikinase inhibitor sorafenib, which has been related to the presence of cancer stem cells (CSCs) that self‐renew and often escape therapy. The key metabolic sensor AMP‐activated kinase (AMPK) has recently been recognized as a tumour growth regulator. In this study, we aimed to elucidate the role of AMPK in the development of a stem cell phenotype in HCC cells. To this end, we enriched the CSC population in HCC cell lines that showed increased expression of drug resistance (ALDH1A1, ABCB1A) and stem cell (CD133, Nanog, Oct4, alpha fetoprotein) markers and demonstrated their stemness phenotype. These cells were refractory to sorafenib‐induced cell death. We report that sorafenib‐resistant cells had lower levels of total and phosphorylated AMPK as well as its downstream substrate, ACC, compared with the parental cells. Interestingly, AMPK knockdown with siRNA or inhibition with dorsomorphin increased the expression of stem cell markers in parental cells and blocked sorafenib‐induced cell death. Conversely, the upregulation of AMPK, either by transfection or by pharmacological activation with A‐769662, decreased the expression of ALDH1A1, ABCB1A, CD133, Nanog, Oct4, and alpha fetoprotein, and restored sensitivity to sorafenib. Analysis of the underlying mechanism points to hypoxia‐inducible factor HIF‐1α as a regulator of stemness. In vivo studies in a xenograft mouse model demonstrated that stem‐like cells have greater tumourigenic capacity. AMPK activation reduced xenograft tumour growth and decreased the expression of stem cell markers. Taken together, these results indicate that AMPK may serve as a novel target to overcome chemoresistance in HCC.
Collapse
Affiliation(s)
- Alicia Bort
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Belén G Sánchez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Pedro A Mateos-Gómez
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Diana Vara-Ciruelos
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, UK
| | - Nieves Rodríguez-Henche
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain
| | - Inés Díaz-Laviada
- Department of Systems Biology, School of Medicine, University of Alcala, Alcalá de Henares, Madrid, Spain.,Chemical Research Institute 'Andrés M. del Río' (IQAR), Alcalá University, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
24
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
25
|
Amin S, Lux A, O'Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2018; 85:37-46. [PMID: 30290005 DOI: 10.1111/bcp.13780] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the effect of metformin on human health is increasing. In addition to its ability to improve the control of hyperglycaemia, metformin has been shown to reduce the burden o,f ageing via effects on damaged DNA and the process of apoptosis. Studies have shown that metformin may reduce the risk of cardiovascular disease through influences on body weight, blood pressure, cholesterol levels and the progression of atherosclerosis. Studies also suggest that metformin may be beneficial for neuro-psychiatric disorders, cognitive impairment and in reducing the risk of dementia, erectile dysfunction and Duchenne muscular dystrophy. In vivo and in vitro studies have shown that metformin has anti-cancer properties, and population studies have suggested that metformin may reduce the risk of cancer or improve cancer prognosis. It is thought that it exerts its anti-cancer effect through the inhibition of the mammalian target of rapamycin (mTOR) signalling pathway. Because of its effect on the mTOR pathway, there may be a role for metformin in slowing or reversing growth of life-threatening hamartomas in tuberous sclerosis complex.
Collapse
Affiliation(s)
- Sam Amin
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Andrew Lux
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Finbar O'Callaghan
- Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
26
|
Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 2018; 37:5666-5681. [PMID: 29921847 DOI: 10.1038/s41388-018-0360-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.
Collapse
Affiliation(s)
- Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Linlin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Hong Liao
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Bingying Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China. .,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Yang SH, Li S, Lu G, Xue H, Kim DH, Zhu JJ, Liu Y. Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget 2018; 7:78787-78803. [PMID: 27791206 PMCID: PMC5346677 DOI: 10.18632/oncotarget.12859] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
It has been reported that metformin acts synergistically with temozolomide (TMZ) to inhibit proliferation of glioma cells including glioblastoma multiforme (GBM). However, the molecular mechanism underlying how metformin exerts its anti-cancer effects remains elusive. We used a combined experimental and bioinformatics approach to identify genes and complex regulatory/signal transduction networks that are involved in restoring TMZ sensitivity of GBM cells after metformin treatment. First, we established TMZ resistant GBM cell lines and found that the resistant cells regained TMZ sensitivity after metformin treatment. We further identified that metformin down-regulates SOX2 expression in TMZ-resistant glioma cells, reduces neurosphere formation capacity of glioblastoma cells, and inhibits GBM xenograft growth in vivo. Finally, the global gene expression profiling data reveals that multiple pathways are involved in metformin treatment related gene expression changes, including fatty acid metabolism and RNA binding and splicing pathways. Our work provided insight of the mechanisms on potential synergistic effects of TMZ and metformin in the treatment of glioblastoma, which will in turn yield potentially translational value for clinical applications.
Collapse
Affiliation(s)
- Seung Ho Yang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangrong Lu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haipeng Xue
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dong H Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jay-Jiguang Zhu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ying Liu
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
28
|
Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams. Oncotarget 2018; 7:80568-80578. [PMID: 27802188 PMCID: PMC5348341 DOI: 10.18632/oncotarget.12966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.
Collapse
|
29
|
Lau MF, Vellasamy S, Chua KH, Sabaratnam V, Kuppusamy UR. Rosiglitazone diminishes the high-glucose-induced modulation of 5-fluorouracil cytotoxicity in colorectal cancer cells. EXCLI JOURNAL 2018; 17:186-199. [PMID: 29743857 PMCID: PMC5938530 DOI: 10.17179/excli2018-1011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most leading cause of morbidity and mortality throughout the world. 5-fluorouracil (5-FU), which is often administrated to disrupt carcinogenesis, was found to elevate blood glucose level among CRC patients. Thus, this study was conducted to evaluate the influence of rosiglitazone on antiproliferative effect of 5-FU using cellular model. Two human colonic carcinoma cell lines (HCT 116 and HT 29) were cultured in the presence of 5-FU, rosiglitazone or in combination under normal and high glucose concentration. The drug cytotoxicity was evaluated using the MTT assay whereas the assessment of cell cycle was carried out using the flow cytometry technique. Combination index (CI) method was used to determine the drug interaction between rosiglitazone and 5-FU. High glucose diminished the cytotoxic effect of 5-FU but at a high drug dosage, this effect could be overcome. Cell cycle analysis demonstrated that 5-FU and rosiglitazone caused G1-phase arrest and S-phase arrest, respectively. CI values indicated that rosiglitazone exerted synergistic effect on 5-FU regardless of glucose levels. This study is the first to demonstrate the influence of rosiglitazone on cytotoxicity of 5-FU under normal or high glucose level. Rosiglitazone may be a promising drug for enhancing the efficacy of 5-FU in the treatment of CRC associated with hyperglycemia.
Collapse
Affiliation(s)
- Meng-Fei Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shalini Vellasamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Saini N, Yang X. Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:133-143. [PMID: 29342230 DOI: 10.1093/abbs/gmx106] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Metformin, a first line medication for type II diabetes, initially entered the spotlight as a promising anti-cancer agent due to epidemiologic reports that found reduced cancer risk and improved clinical outcomes in diabetic patients taking metformin. To uncover the anti-cancer mechanisms of metformin, preclinical studies determined that metformin impairs cellular metabolism and suppresses oncogenic signaling pathways, including receptor tyrosine kinase, PI3K/Akt, and mTOR pathways. Recently, the anti-cancer potential of metformin has gained increasing interest due to its inhibitory effects on cancer stem cells (CSCs), which are associated with tumor metastasis, drug resistance, and relapse. Studies using various cancer models, including breast, pancreatic, prostate, and colon, have demonstrated the potency of metformin in attenuating CSCs through the targeting of specific pathways involved in cell differentiation, renewal, metastasis, and metabolism. In this review, we provide a comprehensive overview of the anti-cancer actions and mechanisms of metformin, including the regulation of CSCs and related pathways. We also discuss the potential anti-cancer applications of metformin as mono- or combination therapies.
Collapse
Affiliation(s)
- Nipun Saini
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
31
|
De Monte A, Brunetti D, Cattin L, Lavanda F, Naibo E, Malagoli M, Stanta G, Bonin S. Metformin and aspirin treatment could lead to an improved survival rate for Type 2 diabetic patients with stage II and III colorectal adenocarcinoma relative to non-diabetic patients. Mol Clin Oncol 2018; 8:504-512. [PMID: 29456855 DOI: 10.3892/mco.2018.1554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
Abstract
Metformin, the drug of choice in the treatment of type 2 diabetes mellitus (DM2), in addition to aspirin (ASA), the drug prescribed for cardioprotection of diabetic and non-diabetic patients, have an inhibitory effect on cancer cell survival. The present population-based study conducted in the province of Trieste (Italy), aimed to investigate the prevalence of DM2 in patients with colorectal adenocarcinoma (CRC) and survival for CRC in diabetic and nondiabetic patients. All permanent residents diagnosed with a CRC between 2004 and 2007 were ascertained through the regional health information system. CRC-specific and relative survival probabilities were computed for each group of patients defined by CRC stage, presence or absence of DM2 treated with metformin, and presence or absence of daily ASA therapy. A total of 515 CRC patients without DM2 and 156 with DM2 treated with metformin were enrolled in the study. At the time of CRC diagnosis, 71 (14%) nondiabetic and 39 (25%) diabetic patients were taking ASA daily. The five-year relative survival for stage III CRC was 101% [95% confidence interval (CI)=76-126] in the 18 patients with DM2 treated with metformin and ASA, 55% (95% CI=31-78) in the 23 without DM2 treated with ASA, 55% (95% CI=45-65) in the 150 without DM2 not taking ASA, and 29% (95% CI=13-45) in the 43 with DM2 treated with metformin, however not with ASA. The findings support the hypothesis of a possible inhibitory effect of metformin and ASA on CRC cells. Randomized controlled trials are required to verify this hypothesis.
Collapse
Affiliation(s)
- Ariella De Monte
- Unit of Medical Clinic, University Hospital of Cattinara-ASUITS, I-34149 Trieste, Italy
| | - Davide Brunetti
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| | - Luigi Cattin
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| | - Francesca Lavanda
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| | - Erica Naibo
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| | - Maria Malagoli
- Oncology Unit, University Hospital of Cattinara-ASUITS, I-34149 Trieste, Italy
| | - Giorgio Stanta
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, I-34149 Trieste, Italy
| |
Collapse
|
32
|
Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci Rep 2017; 7:15992. [PMID: 29167573 PMCID: PMC5700100 DOI: 10.1038/s41598-017-16149-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Metformin is a widely used and well-tolerated anti-diabetic drug that can reduce cancer risk and improve the prognosis of certain malignancies. However, the mechanism underlying its anti-cancer effect is still unclear. We studied the anti-cancer activity of metformin on colorectal cancer (CRC) by using the drug to treat HT29, HCT116 and HCT116 p53−/− CRC cells. Metformin reduced cell proliferation and migration by inducing cell cycle arrest in the G0/G1 phase. This was accompanied by a sharp decrease in the expression of c-Myc and down-regulation of IGF1R. The anti-proliferative action of metformin was mediated by two different mechanisms: AMPK activation and increase in the production of reactive oxygen species, which suppressed the mTOR pathway and its downstream targets S6 and 4EBP1. A reduction in CD44 and LGR5 expression suggested that the drug had an effect on tumour cells with stem characteristics. However, a colony formation assay showed that metformin slowed the cells’ ability to form colonies without arresting cell growth, as confirmed by absence of apoptosis, autophagy or senescence. Our finding that metformin only transiently arrests CRC cell growth suggests that efforts should be made to identify compounds that combined with the biguanide can act synergistically to induce cell death.
Collapse
|
33
|
Xiao Y, Zheng L, Mei Z, Xu C, Liu C, Chu X, Hao B. The impact of metformin use on survival in prostate cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:100449-100458. [PMID: 29245991 PMCID: PMC5725033 DOI: 10.18632/oncotarget.22117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/13/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Metformin has been implicated to reduce the risk of prostate cancer (PCa) beyond its glucose-lowering effect. However, the influence of metformin on prognosis of PCa is often controversial. RESULTS A total of 13 cohort studies encompassing 177,490 individuals were included in the meta-analysis. Data on overall survival (OS) and cancer-specific survival (CSS) was extracted from 8 and six studies, respectively. Comparing metformin users with non-metformin users, the pooled hazard ratios (HRs) for OS and CSS were 0.79 (95% confidence interval [CI] 0.63-0.98) and 0.76 (95% CI 0.57-1.02), respectively. Subgroup analyses stratified by baseline charcteristics indicated significant CSS benefits were noted in studies conducted in USA/Canada with prospective, large sample size, multiple-centered study design. Five studies reported the PCa prognosis for recurrence-free survival (RFS) and metformin use was significantly associated with patient RFS (HR 0.74, 95% CI, 0.58-0.95). METHODS Relevant studies were searched and identified using PubMed, Embase and Cochrane databases from inception through January 2017, which investigated associations between the use of metformin and PCa prognosis. Combined HRs with 95% CI were pooled using a random-effects model. The primary outcomes of interest were OS and CSS. CONCLUSIONS Our findings provide indication that metformin therapy has a trend to improve survival for patients with PCa. Further prospective, multi-centered, large sample size cohort studies are warranted to determine the true relationship.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lei Zheng
- Department of Endocrinology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changbao Xu
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changwei Liu
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaohan Chu
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bin Hao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
34
|
Fakhrejahani F, Madan RA, Dahut WL. Management Options for Biochemically Recurrent Prostate Cancer. Curr Treat Options Oncol 2017; 18:26. [PMID: 28434181 DOI: 10.1007/s11864-017-0462-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prostate cancer is the most common solid tumor malignancy in men worldwide. Treatment with surgery and radiation can be curative in organ-confined disease. Unfortunately, about one third of men develop biochemically recurrent disease based only on rising prostate-specific antigen (PSA) in the absence of visible disease on conventional imaging. For these patients with biochemical recurrent prostate cancer, there is no uniform guideline for subsequent management. Based on available data, it seems prudent that biochemical recurrent prostate cancer should initially be evaluated for salvage radiation or prostatectomy, with curative intent. In selected cases, high-intensity focused ultrasound and cryotherapy may be considered in patients that meet very narrow criteria as defined by non-randomized trials. If salvage options are not practical or unsuccessful, androgen deprivation therapy (ADT) is a standard option for disease control. While some patients prefer ADT to manage the disease immediately, others defer treatment because of the associated toxicity. In the absence of definitive randomized data, patients may be followed using PSA doubling time as a trigger to initiate ADT. Based on retrospective data, a PSA doubling time of less than 3-6 months has been associated with near-term development of metastasis and thus could be used signal to initiate ADT. Once treatment is begun, patients and their providers can choose between an intermittent and continuous ADT strategy. The intermittent approach may limit side effects but in patients with metastatic disease studies could not exclude a 20% greater risk of death. In men with biochemical recurrence, large studies have shown that intermittent therapy is non-inferior to continuous therapy, thus making this a reasonable option. Since biochemically recurrent prostate cancer is defined by technological limitations of radiographic detection, as new imaging (i.e., PSMA) strategies are developed, it may alter how the disease is monitored and perhaps managed. Furthermore, patients have no symptoms related to their disease and thus many prefer options that minimize toxicity. For this reason, herbal agents and immunotherapy are under investigation as potential alternatives to ADT and its accompanying side effects. New therapeutic options combined with improved imaging to evaluate the disease may markedly change how biochemically recurrent prostate cancer is managed in the future.
Collapse
Affiliation(s)
- Farhad Fakhrejahani
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr, MSC 1906, Bethesda, 20892, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr, MSC 1906, Bethesda, 20892, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr, MSC 1906, Bethesda, 20892, USA.
| |
Collapse
|
35
|
Szaryńska M, Olejniczak A, Kobiela J, Spychalski P, Kmieć Z. Therapeutic strategies against cancer stem cells in human colorectal cancer. Oncol Lett 2017; 14:7653-7668. [PMID: 29250169 PMCID: PMC5727596 DOI: 10.3892/ol.2017.7261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent malignancy and represents the fourth most common cause of cancer-associated mortalities in the world. Despite many advances in the treatment of CRC, the 5-year survival rate of patients with CRC remains unsatisfactory due to tumor recurrence and metastases. Recently, cancer stem cells (CSCs), have been suggested to be responsible for the initiation and relapse of the disease, and have been identified in CRC. Due to their basic biological features, which include self-renewal and pluripotency, CSCs may be novel therapeutic targets for CRC and other cancer types. Conventional therapeutics only act on proliferating and mature cancer cells, while quiescent CSCs survive and often become resistant to chemotherapy. In this review, markers of CRC-CSCs are evaluated and the recently introduced experimental therapies that specifically target these cells by inducing CSC proliferation, differentiation and sensitization to apoptotic signals via molecules including Dickkopf-1, bone morphogenetic protein 4, Kindlin-1, tankyrases, and p21-activated kinase 1, are discussed. In addition, novel strategies aimed at inhibiting some crucial processes engaged in cancer progression regulated by the Wnt, transforming growth factor β and Notch signaling pathways (pyrvinium pamoate, silibinin, PRI-724, P17, and P144 peptides) are also evaluated. Although the metabolic alterations in cancer were first described decades ago, it is only recently that the concept of targeting key regulatory molecules of cell metabolism, such as sirtuin 1 (miR-34a) and AMPK (metformin), has emerged. In conclusion, the discovery of CSCs has resulted in the definition of novel therapeutic targets and the development of novel experimental therapies for CRC. However, further investigations are required in order to apply these novel drugs in human CRC.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Agata Olejniczak
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Piotr Spychalski
- Department of General, Endocrine and Transplant Surgery, Invasive Medicine Center, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, 80-210 Gdańsk; Gdańsk, Poland
| |
Collapse
|
36
|
Lee J, Park D, Lee Y. Metformin Synergistically Potentiates the Antitumor Effects of Imatinib in Colorectal Cancer Cells. Dev Reprod 2017; 21:139-150. [PMID: 28785735 PMCID: PMC5532306 DOI: 10.12717/dr.2017.21.2.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Metformin is the most commonly prescribed anti-diabetic drug with relatively
minor side effect. Substantial evidence has suggested that metformin is
associated with decreased cancer risk and anticancer activity against diverse
cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity
for treatment of chronic myeloid leukemia and also induces growth arrest and
apoptosis in colorectal cancer cells. In this study, we tested the combination
of imatinib and metformin against HCT15 colorectal cancer cells for effects on
cell viability, cell cycle and autophagy. Our data show that metformin
synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated
by combination and drug reduction indices. We also demonstrate that the
combination causes synergistic down-regulation of pERK, cell cycle arrest in S
and G2/M phases via reduction of cyclin B1 level. Moreover, the
combination resulted in autophagy induction as revealed by increased acidic
vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic
process by chloroquine led to decreased cell viability, suggesting that
induction of autophagy seems to play a cell protective role that may act against
anticancer effects. In conclusion, our present data suggest that metformin in
combination with imatinib might be a promising therapeutic option in colorectal
cancer.
Collapse
Affiliation(s)
- Jaeryun Lee
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Deokbae Park
- Dept. of Histology, Jeju National University School of Medicine, Jeju 690-756, Korea
| | - Youngki Lee
- Dept. of Histology, Jeju National University School of Medicine, Jeju 690-756, Korea
| |
Collapse
|
37
|
Peled Y, Lavee J, Raichlin E, Katz M, Arad M, Kassif Y, Peled A, Asher E, Elian D, Har-Zahav Y, Shlomo N, Freimark D, Goldenberg I, Klempfner R. Metformin therapy reduces the risk of malignancy after heart transplantation. J Heart Lung Transplant 2017; 36:1350-1357. [PMID: 28736111 DOI: 10.1016/j.healun.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malignancy and diabetes mellitus (DM) cause significant morbidity and mortality after heart transplantation (HTx). Metformin, one of the most commonly used anti-diabetic drugs worldwide, has also been shown to exhibit anti-tumor activity. We therefore investigated the association between metformin therapy and malignancy after HTx. METHODS The study population comprised 237 patients who underwent HTx between 1991 and 2016 and were prospectively followed-up. Clinical data were recorded on prospectively designed forms. The primary outcome was any cancer recorded during 15 years of follow-up. Treatment with metformin and the development of DM after HTx were assessed as time-dependent factors in the analyses. RESULTS Of the 237 study patients, 85 (36%) had diabetes. Of the DM patients, 48 (56%) were treated with metformin. Kaplan-Meier survival analysis showed that, at 15 years after HTx, malignancy rate was 4% for DM patients treated with metformin, 62% for those who did not receive metformin and 27% for non-DM patients (log-rank test, p < 0.0001). Consistently, multivariate analysis showed that for DM patients, metformin therapy was independently associated with a significant 90% reduction (hazard ratio = 0.10; 95% confidence interval 0.02 to 0.40; p = 0.001) in the risk of the development of a malignancy. DM patients who were treated with metformin had a markedly lower risk (65%; p = 0.001) for the development of a malignancy or death after HTx as compared with non-DM patients. CONCLUSIONS Our findings suggest that metformin therapy is independently associated with a significant reduction in the risk of malignancy after HTx.
Collapse
Affiliation(s)
- Yael Peled
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jacob Lavee
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eugenia Raichlin
- Cardiology Department, Loyola University Medical Center, Maywood, Illinois, USA
| | - Moshe Katz
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Arad
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yigal Kassif
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Peled
- Clalit Health Services, Central Region, Israel
| | - Elad Asher
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Elian
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yedael Har-Zahav
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Nir Shlomo
- Israeli Association for Cardiovascular Trials, The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Dov Freimark
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Goldenberg
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Israeli Association for Cardiovascular Trials, The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Robert Klempfner
- The Olga and Lev Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget 2017; 8:56546-56557. [PMID: 28915611 PMCID: PMC5593582 DOI: 10.18632/oncotarget.17798] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin is most widely prescribed for type 2 diabetes. Recently, evidences have shown that metformin has anticancer effects on pancreatic-, colorectal-, ovarian-, and other cancers. Because metformin has less adverse effects and is inexpensive, it could be a useful chemo-therapeutic agent with anticancer effects. In this study, we demonstrated metformin inhibited by cell proliferation, cell migration ability, clonogenic ability, and cancer stem cell population. Metformin also induced cell cycle arrest in parental-(SNU-C5), and 5-Fu resistant-colorectal cancer cell line (SNU-C5_5FuR). Moreover, a treatment that combines 5-Fu and metformin was found to have a synergistic effect on the cell proliferation rate, especially in SNU-C5_5FuR, which was mediated by the activation of AMPK pathway and NF-ƙB pathway, well-known metformin mechanisms. In this study, we suggested novel anticancer mechanism of metformin that inhibited DNA replication machinery, such as the MCM family in SNU-C5_5FuR. In conclusion, we provided that how metformin acts as not only a chemo-sensitizer, but also as a synergistic effector of 5-Fu in the 5-Fu resistant-cell line. We speculate that metformin used for adjuvant therapy is effective on 5-Fu resistant cancer cells.
Collapse
|
39
|
EL-Arabey AA. New insight for metformin against bladder cancer. Genes Environ 2017; 39:13. [PMID: 28373897 PMCID: PMC5376285 DOI: 10.1186/s41021-017-0074-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/03/2017] [Indexed: 01/26/2023] Open
Abstract
International Agency for Research on Cancer (IARC) estimated that bladder cancer is the ninth most common cancer in the world, with 430,000 new cases and 165,000 deaths in 2012. Bladder cancer represents the fourth most common cancer in men and ninth most common cancer in women. It is the second most prevalent cancer in men 60 years of age or older in United States. Looking further down, continuing advancements in cancer research could potentially offer more choices for clinician and patient with longer survival and better quality of life. Although, bladder cancer represents an ideal tumor model to test and apply cancer prevention strategies; there are limited studies about application of metformin in the management of bladder cancer. Here, I will shed light on the proposed mechanisms of anti-carcinogenic effects of metformin and cohort of these mechanisms with the novel application of metformin as therapy of bladder cancer.
Collapse
Affiliation(s)
- Amr Ahmed EL-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
- CAS-TWAS Fellowship at University of Science and Technology of China (USTC), Hefei, 23027 China
| |
Collapse
|
40
|
Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Lett 2017; 396:103-109. [PMID: 28300634 DOI: 10.1016/j.canlet.2017.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
The cancer stem cell model claims that the initiation, maintenance, and growth of a tumor are driven by a small population of cancer cells termed cancer stem cells. Cancer stem cells possess a variety of phenotypes associated with therapeutic resistance and often cause recurrence of the diseases. Several strategies have been investigated to target cancer stem cells in a variety of cancers, such as blocking one or more self-renewal signaling pathways, reducing the expression of drug efflux and ATP-binding cassette efflux transporters, modulating epigenetic aberrations, and promoting cancer stem cell differentiation. A number of cell and animal studies strongly support the potential benefits of combining chemotherapeutic drugs with cancer stem cell targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This mini-review provides an updated discussion of these preclinical and clinical studies.
Collapse
Affiliation(s)
- Yanyan Li
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA.
| | - Katharine Atkinson
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| | - Tao Zhang
- School of Pharmacy, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| |
Collapse
|
41
|
Leonel C, Borin TF, de Carvalho Ferreira L, Moschetta MG, Bajgelman MC, Viloria-Petit AM, de Campos Zuccari DAP. Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J Mammary Gland Biol Neoplasia 2017; 22:27-41. [PMID: 28078601 DOI: 10.1007/s10911-016-9370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties, generating metastases. Transforming growth factor beta (TGF-β) is associated with this malignancy by having the ability to induce EMT. Metformin, has been shown to inhibit EMT in breast cancer cells. Based on this evidence we hypothesize that treatment with metformin and the silencing of TGF-β, inhibits the EMT in cancer cells. Canine metastatic mammary tumor cell line CF41 was stably transduced with a shRNA-lentivirus, reducing expression level of TGF-β1. This was combined with metformin treatment, to look at effects on cell migration and the expression of EMT markers. For in vivo study, unmodified or TGF-β1sh cells were injected in the inguinal region of nude athymic female mice followed by metformin treatment. The mice's lungs were collected and metastatic nodules were subsequently assessed for EMT markers expression. The migration rate was lower in TGF-β1sh cells and when combined with metformin treatment. Metformin treatment reduced N-cadherin and increased E-cadherin expression in both CF41 and TGF-β1sh cells. Was demonstrated that metformin treatment reduced the number of lung metastases in animals bearing TGF-β1sh tumors. This paralleled a decreased N-cadherin and vimentin expression, and increased E-cadherin and claudin-7 expression in lung metastases. This study confirms the benefits of TGF-β1 silencing in addition to metformin as potential therapeutic agents for breast cancer patients, by blocking EMT process. To the best of our knowledge, we are the first to report metformin treatment in cells with TGF-β1 silencing and their effect on EMT.
Collapse
Affiliation(s)
- Camila Leonel
- Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP/IBILCE), PostGraduate Program in Genetics, Cristovao Colombo Street, 2265, Jardim Nazareth, Sao Jose do Rio Preto, SP, Brazil
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Laboratory of Molecular Investigation of Cancer (LIMC), Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
| | - Thaiz Ferraz Borin
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Laboratory of Molecular Investigation of Cancer (LIMC), Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), PostGraduate Program in Health Sciences, Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
| | - Lívia de Carvalho Ferreira
- Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP/IBILCE), PostGraduate Program in Genetics, Cristovao Colombo Street, 2265, Jardim Nazareth, Sao Jose do Rio Preto, SP, Brazil
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Laboratory of Molecular Investigation of Cancer (LIMC), Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
| | - Marina Gobbe Moschetta
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Laboratory of Molecular Investigation of Cancer (LIMC), Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), PostGraduate Program in Health Sciences, Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil
| | - Marcio Chaim Bajgelman
- National Center for Research in Energy and Materials - CNPEM, Brazilian Biosciences National Laboratory - LNBio, Giuseppe Máximo Scolfaro Street, Campinas, SP, 10000, Brazil
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Debora Aparecida Pires de Campos Zuccari
- Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP/IBILCE), PostGraduate Program in Genetics, Cristovao Colombo Street, 2265, Jardim Nazareth, Sao Jose do Rio Preto, SP, Brazil.
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Laboratory of Molecular Investigation of Cancer (LIMC), Brigadeiro Faria Lima Avenue, 5416, Vila São Pedro, Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
42
|
Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017; 54:24-33. [DOI: 10.1016/j.ctrv.2017.01.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
|
43
|
Bekusova VV, Patsanovskii VM, Nozdrachev AD, Trashkov AP, Artemenko MR, Anisimov VN. Metformin prevents hormonal and metabolic disturbances and 1,2-dimethylhydrazine-induced colon carcinogenesis in non-diabetic rats. Cancer Biol Med 2017; 14:100-107. [PMID: 28443209 PMCID: PMC5365186 DOI: 10.20892/j.issn.2095-3941.2016.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Effects of two doses of the anti-diabetic drug, metformin (MF), on hormonal and metabolic levels of serum of non-diabetic male Wistar rats with 1,2-dimethylhydrazine (DMH)-induced colon tumor adenocarcinomas were studied. Carcinogenesis in the animals was also observed. Rats with DMH-induced colon adenocarcinomas had elevated levels of serum glucose, insulin, insulin-like growth factor-1, total cholesterol, triglycerides, catalase, malonic dialdehyde, glycated hemoglobin, aspartate aminotransferase, and alanine aminotransferase and decreased hemoglobin. Treatment with two doses of MF normalized majority of these changes in DMH-treated rats, whereas the drug was ineffective in rats without DMH treatment. The only exception was the decreased triglyceride levels in MF-treated rats. A 100 mg/kg dose of MF increased DMH-induced exophytic colon carcinomas and decreased endophytic tumors compared with untreated rats. Moreover, both MF doses increased DMH-induced and highly differentiated tumors and decreased the invasiveness of colon carcinomas compared with rats provided with DMH and water. Therefore, effects of MF on metabolic homeostasis are critical for preventing colon cancer.
Collapse
Affiliation(s)
- Viktoria V. Bekusova
- Department of Physiology, St. Petersburg State University, St. Petersburg 197183, Russia
| | - Vasily M. Patsanovskii
- I.P.Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Alexander D. Nozdrachev
- Department of Physiology, St. Petersburg State University, St. Petersburg 197183, Russia
- I.P.Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Alexandr P. Trashkov
- Deparment of Experimental Pharmacology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Margarita R. Artemenko
- Deparment of Experimental Pharmacology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758, Russia
| |
Collapse
|
44
|
Ning X, Du Y, Ben Q, Huang L, He X, Gong Y, Gao J, Wu H, Man X, Jin J, Xu M, Li Z. Bulk pancreatic cancer cells can convert into cancer stem cells(CSCs) in vitro and 2 compounds can target these CSCs. Cell Cycle 2016; 15:403-12. [PMID: 26709750 DOI: 10.1080/15384101.2015.1127471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the "yin-yang" model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.
Collapse
Affiliation(s)
- Xiaoyan Ning
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China.,b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Yiqi Du
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Qiwen Ben
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ling Huang
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoping He
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yanfang Gong
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jun Gao
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Hongyu Wu
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaohua Man
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jing Jin
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Ming Xu
- b Department of Gastroenterology , Guangdong No.2 Provincial People' s Hospital , Guangzhou, China
| | - Zhaoshen Li
- a Department of Gastroenterology , Changhai Hospital, Second Military Medical University , Shanghai , China
| |
Collapse
|
45
|
Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 2016; 7:873-84. [PMID: 26621849 PMCID: PMC4808039 DOI: 10.18632/oncotarget.6418] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Overexpression of hypoxia-induced factor 1α (HIF-1α) has been shown to be involved in the development and progression of hepatocellular carcinoma (HCC). HIF-1α should therefore be a promising molecular target for the development of anti-HCC agents. Metformin, an established antidiabetic drug, has proved to also be effective in treating cancer although the precise underlying mechanisms of this activity are not fully elucidated. The aim of this study was to investigate the effects of metformin on the expression of HIF-1α and oxygen metabolism in HCC. The results showed that metformin inhibited hypoxia-induced HIF-1α accumulation and activation independent of AMP-activated protein kinase (AMPK). Moreover, this decrease in HIF-1α accumulation was accompanied by promotion of HIF-1α protein degradation. In addition, metformin significantly decreased oxygen consumption, ultimately leading to increased intracellular oxygen tension and decreased staining with the hypoxia marker pimonidazole. In vivo studies demonstrated that metformin delayed tumor growth and attenuated the expression of HIF-1α in HCC tumor xenografts. Together, these findings suggest that metformin decreases hypoxia-induced HIF-1α accumulation by actively suppressing mitochondrial oxygen consumption and enhancing cellular oxygenation ability, providing a fundamental mechanism of metformin activity against HCC.
Collapse
|
46
|
Mayer MJ, Klotz LH, Venkateswaran V. The Effect of Metformin Use during Docetaxel Chemotherapy on Prostate Cancer Specific and Overall Survival of Diabetic Patients with Castration Resistant Prostate Cancer. J Urol 2016; 197:1068-1075. [PMID: 27984108 DOI: 10.1016/j.juro.2016.10.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE Docetaxel is the first line chemotherapy currently used to treat patients with symptomatic metastatic castration resistant prostate cancer. Although it provides survival benefits, it is associated with significant side effects. Novel therapeutic options are needed for patients with metastatic castration resistant prostate cancer and an approach is combining docetaxel with chemosensitizing agents. Metformin has been shown to improve the survival of patients with breast, lung and endometrial cancer receiving chemotherapy, and enhance chemotherapeutic efficacy in breast cancer and colon cancer cells. However, to our knowledge the chemosensitizing effect of metformin in prostate cancer has not been explored. Therefore, the hypothesis for our study was that diabetic patients with metastatic castration resistant prostate cancer who were administered metformin during docetaxel chemotherapy would have improved prostate cancer specific and overall survival. MATERIALS AND METHODS This retrospective cohort study used data from several Ontario administrative health care databases. Men older than 65 years diagnosed with metastatic castration resistant prostate cancer and treated with docetaxel were stratified into groups based on diabetes status and use of antidiabetic medications. We evaluated the effect of metformin use with docetaxel on prostate cancer specific survival and overall survival using Kaplan-Meier survival curves, the log rank test and multivariate Cox proportional HRs. RESULTS Survival curves showed that metformin use with docetaxel did not improve prostate cancer specific survival (p = 0.9562) or overall survival (p = 0.9927). HRs showed no significant effect of metformin use with docetaxel on prostate cancer specific survival (HR = 0.96, p = 0.66) or overall survival (HR = 0.94, p = 0.39). CONCLUSIONS Metformin use during docetaxel chemotherapy did not significantly improve prostate cancer specific or overall survival in diabetic patients with metastatic castration resistant prostate cancer. This study indicates that metformin may not be an effective chemosensitizer for metastatic castration resistant prostate cancer.
Collapse
Affiliation(s)
- Michelle J Mayer
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Laurence H Klotz
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vasundara Venkateswaran
- Division of Urology, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Paulus JK, Williams CD, Cossor FI, Kelley MJ, Martell RE. Metformin, Diabetes, and Survival among U.S. Veterans with Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25:1418-1425. [PMID: 27496094 DOI: 10.1158/1055-9965.epi-16-0312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Metformin has been associated with improved colorectal cancer survival, but investigations are limited by small numbers of patients and confounding by diabetic severity. We examined the association between metformin use and overall survival (OS) in patients with diabetes and colorectal cancer in a large population of U.S. veterans, while adjusting for measures of diabetic severity. METHODS Patients diagnosed with colorectal cancer from January 2001 to December 2008 were identified from the Veterans Affairs Central Cancer Registry. Multivariable models were used to examine the adjusted association of OS with diabetes and use of antidiabetic medications. RESULTS There were 21,352 patients diagnosed with colorectal cancer identified (n = 16,355 nondiabetic patients, n = 2,038 diabetic patients on metformin, n = 2,136 diabetic patients on medications other than metformin, n = 823 diabetic patients not on antidiabetic medication). Diabetic patients had a significantly worse OS than nondiabetic patients, but metformin users had only a 10% increase in death (HRadj 1.10; 95% CI, 1.03-1.17, P = 0.004), as compared with 22% for users of other antidiabetic medications (HRadj 1.22; 95% CI, 1.15-1.29, P < 0.0001). Among colorectal cancer patients with diabetes, metformin users had a 13% improved OS versus patients taking other antidiabetic medications (HRadj 0.87; 95% CI, 0.79-0.95, P = 0.003), while diabetic patients not on any antidiabetic medications did not differ with respect to OS (HRadj 1.02; 95% CI, 0.90-1.15, P = 0.76). CONCLUSIONS Among diabetics with colorectal cancer, metformin use is associated with improved survival, despite adjustments for diabetes severity and other risk factors. IMPACT These data lend further support to the conduct of randomized studies of possible anticancer effects of metformin among patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev; 25(10); 1418-25. ©2016 AACR.
Collapse
Affiliation(s)
- Jessica K Paulus
- Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts.
| | - Christina D Williams
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, North Carolina. Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina
| | - Furha I Cossor
- Department of Hematology and Oncology, Lahey Clinic, Burlington, Massachusetts
| | - Michael J Kelley
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, North Carolina. Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina
| | - Robert E Martell
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
48
|
Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 2016; 78:13-26. [PMID: 27118574 DOI: 10.1007/s00280-016-3037-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic regimens are the most common treatment to inhibit tumor growth, but there is great variability in clinical responses of cancer patients; cancer cells often develop resistance to chemotherapeutics which results in tumor recurrence and further progression. Metformin, an extensively prescribed and well-tolerated first-line therapeutic drug for type 2 diabetes mellitus, has recently been identified as a potential and attractive anticancer adjuvant drug combined with chemotherapeutic drugs to improve treatment efficacy and lower doses. In this review, we summarized the molecular mechanisms underlying anticancer effects of metformin, which included insulin- and AMPK-dependent effects, selectively targeting cancer stem cells, reversing multidrug resistance, inhibition of the tumor metastasis and described the antineoplastic effects of metformin combined with chemotherapeutic agents in digestive system cancers (colorectal, gastric, hepatic and pancreatic cancer), reproductive system cancers (ovarian and endometrial cancer), prostate cancer, breast cancer, lung cancer, etc. Moreover, the clinical trials regarding metformin in combination of chemotherapeutic drugs were presented and the clinical obstacle or limitation related to the potential role of metformin in cancer treatment was also discussed in this review.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
49
|
Saber MM, Galal MA, Ain-Shoka AA, Shouman SA. Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines. BMC Cancer 2016; 16:126. [PMID: 26896068 PMCID: PMC4759732 DOI: 10.1186/s12885-016-2157-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The link between inflammation and cancer has been confirmed by the use of anti-inflammatory therapies in cancer prevention and treatment. 5-aminosalicylic acid (5-ASA) was shown to decrease the growth and survival of colorectal cancer (CRC) cells. Studies also revealed that metformin induced apoptosis in several cancer cell lines. METHODS We investigated the combinatory effect of 5-ASA and metformin on HCT-116 and Caco-2 CRC cell lines. Apoptotic markers were determined using western blotting. Expression of pro-inflammatory cytokines was determined by RT-PCR. Inflammatory transcription factors and metastatic markers were measured by ELISA. RESULTS Metformin enhanced CRC cell death induced by 5-ASA through significant increase in oxidative stress and activation of apoptotic machinery. Moreover, metformin enhanced the anti-inflammatory effect of 5-ASA by decreasing the gene expression of IL-1β, IL-6, COX-2 and TNF-α and its receptors; TNF-R1 and TNF-R2. Significant inhibition of activation of NF-κB and STAT3 transcription factors, and their downstream targets was also observed. Metformin also enhanced the inhibitory effect of 5-ASA on MMP-2 and MMP-9 enzyme activity, indicating a decrease in metastasis. CONCLUSION The current data demonstrate that metformin potentiates the antitumor effect of 5-ASA on CRC cells suggesting their potential use as an adjuvant treatment in CRC.
Collapse
Affiliation(s)
- Mona M Saber
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - May A Galal
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Afaf A Ain-Shoka
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Samia A Shouman
- Parmacology Unit,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
50
|
He J, Wang K, Zheng N, Qiu Y, Xie G, Su M, Jia W, Li H. Metformin suppressed the proliferation of LoVo cells and induced a time-dependent metabolic and transcriptional alteration. Sci Rep 2015; 5:17423. [PMID: 26616174 PMCID: PMC4663508 DOI: 10.1038/srep17423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Metformin is a widely used anti-diabetic drug with potential anti-tumor activity. However, little is known about its global metabolic and transcriptional impacts on tumor cells. In current study, we performed a metabolic profiling on human-derived colon cancer LoVo cells treated by 10 mM metformin for 8, 24 and 48 h. An obvious time-dependent metabolic alteration was observed from 8 to 48 h, prior to the reduction of cell viability. A total of 47, 45 and 66 differential metabolites were identified between control and metformin-treated cells at three time points. Most of the metabolites were up-regulated at 8 h, but down-regulated at 24 and 48 h by metformin. These metabolites were mainly involved in carbohydrates, lipids, amino acids, vitamins and nucleotides metabolism pathways. Meanwhile, the transcirptomic profile revealed 134 and 3061 differentially expressed genes at 8 and 24 h by metformin. In addition to the cancer signaling pathways, expression of genes involved in cell energy metabolism pathways was significantly altered, which were further validated with genes in glucose metabolism pathway. Altogether, our current data indicate that metformin suppressed the proliferation of LoVo cells, which may be due to the modulation on cell energy metabolism at both metabolic and transcriptional levels in a time-dependent way.
Collapse
Affiliation(s)
- Jiaojiao He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke Wang
- Laboratory of Integrative Medicine Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Diabetes Center Albert Einstein College of Medicine, 1300 Morris Part Ave, Bronx, New York, 10461, USA
| | - Guoxiang Xie
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA
| | - Mingming Su
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, 96813, USA
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|