1
|
Ma M, Xue Z, Li C, Zhang X, Gao J, Deng T, Gao C, Wang N. Inhibition of pseudo-allergic reactions by vitamin K3 directly targeting GAB1 in mast cells. Int Immunopharmacol 2024; 137:112490. [PMID: 38897121 DOI: 10.1016/j.intimp.2024.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vitamin K3 (VK3), a fat-soluble synthetic analog of the vitamin K family, has coagulant, anti-inflammatory, antibacterial, and anticancer properties. Pseudo allergy is a IgE-independent immune response associated with mast cells. This study investigated the role of VK3 in IgE-independent mast cell activation. METHODS Substance P (SP) was used to induce LAD2-cell activation in order to analyze the effects of VK3 in vitro. Cutaneous allergy and systemic allergy mouse models were used to analyze the anti-pseudo-allergic effects of VK3. Proteome microarray assays were used to analyze VK3-binding protein. Biolayer interferometry and immunoprecipitation were used to verify interaction between VK3 and its key targets. RNA interference was used to determine the role of GAB1 in LAD2cell activation. RESULTS VK3 inhibited SP-induced LAD2-cell activation, and resulted in the release of β-hexosaminidase, histamine and cytokines; VK3 inhibited SP-induced pseudo allergic reactions in mice, and serum histamine and TNF-α levels decreased. Degranulation of skin mast cells was reduced; GAB1 in mast cells was stably bound to VK3. GAB1 participated in SP-induced LAD2-cell activation. GAB1 knockdown in LAD2 cells prevented SP-induced β-hexosaminidase release, calcium mobilization and cell skeletal remodeling. VK3 directly binds to GAB1 and reduces its expression to inhibited SP-induced LAD2 cell activation. CONCLUSION The anti-pseudo-allergic activity of VK3 was confirmed in vitro and in vivo. VK3 can inhibit SP-induced mast cell activation by directly targeting GAB1. This study provides new insights on the activity of VK3 and the mechanism of pseudoallergic reaction.
Collapse
Affiliation(s)
- Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Zhuoyin Xue
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jie Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Deng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Chang Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Bongartz H, Mehwald N, Seiß EA, Schumertl T, Naß N, Dittrich A. Dysregulated Gab1 signalling in triple negative breast cancer. Cell Commun Signal 2024; 22:161. [PMID: 38448989 PMCID: PMC10916281 DOI: 10.1186/s12964-024-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is especially aggressive and associated with high metastasis. The aetiology of TNBC is heterogeneous and characterised by multiple different mutations that amongst others cause constitutive and dysregulated MAPK and PI3K signalling. Additionally, in more than 50% of TNBC patients, the epidermal growth factor receptor (EGFR) is overexpressed and constitutively active. The multi-site docking protein Grb2-associated binder 1 (Gab1) is a central signalling hub that connects MAPK and PI3K signalling. METHODS Expression and activation of members of the Gab1/PI3K/MAPK signalling network were assessed in cells from different breast cancer subtypes. Influence of short- and long-term inhibition of EGFR, MAPK and PI3K on the activation of the Gab1/PI3K/MAPK signalling network as well as on cell viability, proliferation and migration was determined. Additionally, cellular localisation of Gab1 and Gab1 variants in naive cells and cells treated with the above-mentioned inhibitors was investigated. RESULTS We show that, activation of the Gab1/PI3K/MAPK signalling network is heterogeneous between different breast cancer subtypes. Gab1 phosphorylation and plasma membrane recruitment of Gab1 are dysregulated in the EGFRhigh TNBC cell line MDA-MB-468. While the Gab1/MAPK/PI3K signalling network follows canonical Gab1 signalling in naive MDA-MB-468 cells, Gab1 signalling is changed in cells that acquired resistance towards MAPK and PI3K inhibition. In resistant cells, Gab1 is not located at the plasma membrane despite strong activation of PI3K and MAPK. Furthermore, Gab1 tyrosine phosphorylation is uncoupled from plasma membrane recruitment. CONCLUSION Our study indicates that Gab1 signalling changes fundamentally during the acquisition of resistance to pharmacological inhibitors. Given the molecular heterogeneity between breast cancer subtypes, the detailed understanding of dysregulated and aberrant signalling is an absolute necessity in order to develop personalised therapies for patients with TNBC.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nora Mehwald
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Elena A Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
| | - Tim Schumertl
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany
- Present address: Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Norbert Naß
- Department of Pathology, Brandenburg Medical School Theodor Fontane, University Hospital Brandenburg / Havel, Hochstraße 29, Brandenburg, 14770, Germany
| | - Anna Dittrich
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
- Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany.
| |
Collapse
|
3
|
Sanlav G, Baran B, Kum Özşengezer S, Kizmazoğlu D, Altun Z, Aktaş S, Olgun N. S-100 and MATH-1 Protein Expressions Can Be Useful for the Prediction of Clinical Outcome in Neuroblastoma Patients. J Pediatr Hematol Oncol 2024; 46:21-28. [PMID: 37943051 DOI: 10.1097/mph.0000000000002783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid tumor of childhood, remarkable for its broad spectrum of clinical behavior. This diversity in behavior correlates closely with defined clinical and biological features and combinations of prognostic variables are used for risk-group assignment. S-100 proteins have roles in differentiation and were shown to be frequently dysregulated in NB. MATH-1 protein plays role in neuronal cell differentiation through development. However, up to date, there are no studies evaluating the relationship between MATH-1 and NB. Grb2-associated binding (Gab) proteins have roles in the regulation of cell growth and differentiation. Gab1 was reported to be related to poor survival of high-risk NB patients. The aim of this study was to investigate the relationship between differentiation-related S-100, MATH-1, and Gab1 proteins and risk group and/or stages of NB. A significant relation was found between S-100 and early stages of NB. This study also revealed a significant association between MATH-1 and low-risk groups. S-100 and MATH-1 were also shown to provide survival advantages among stages and risk groups. The findings of this study support the assumption that S-100 and MATH-1 can be potential prognostic biomarkers for staging and risk-group assignment of NB patients. These proteins can be useful tools for clinicians to guide through treatment options, especially for the evaluation of tumor differentiation.
Collapse
Affiliation(s)
| | | | | | - Deniz Kizmazoğlu
- Pediatric Oncology, Dokuz Eylul University Institute of Oncology, İzmir, Turkey
| | | | | | - Nur Olgun
- Pediatric Oncology, Dokuz Eylul University Institute of Oncology, İzmir, Turkey
| |
Collapse
|
4
|
Pérez-Baena MJ, Cordero-Pérez FJ, Pérez-Losada J, Holgado-Madruga M. The Role of GAB1 in Cancer. Cancers (Basel) 2023; 15:4179. [PMID: 37627207 PMCID: PMC10453317 DOI: 10.3390/cancers15164179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
GRB2-associated binder 1 (GAB1) is the inaugural member of the GAB/DOS family of pleckstrin homology (PH) domain-containing proteins. Upon receiving various stimuli, GAB1 transitions from the cytoplasm to the membrane where it is phosphorylated by a range of kinases. This event recruits SH2 domain-containing proteins like SHP2, PI3K's p85 subunit, CRK, and others, thereby activating distinct signaling pathways, including MAPK, PI3K/AKT, and JNK. GAB1-deficient embryos succumb in utero, presenting with developmental abnormalities in the heart, placenta, liver, skin, limb, and diaphragm myocytes. Oncogenic mutations have been identified in the context of cancer. GAB1 expression levels are disrupted in various tumors, and elevated levels in patients often portend a worse prognosis in multiple cancer types. This review focuses on GAB1's influence on cellular transformation particularly in proliferation, evasion of apoptosis, metastasis, and angiogenesis-each of these processes being a cancer hallmark. GAB1 also modulates the resistance/sensitivity to antitumor therapies, making it a promising target for future anticancer strategies.
Collapse
Affiliation(s)
- Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | | | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (M.J.P.-B.); (J.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
- Virtual Institute for Good Health and Well Being (GLADE), European Campus of City Universities (EC2U), 86073 Poitiers, France
| |
Collapse
|
5
|
Xu R, He H, Wang Y, Peng Q, Mei K, Liu Y, Yang Q. LncRNA AK001796 promotes cell proliferation via acting as a ceRNA of miR-150 in hepatocellular carcinoma. Genet Mol Biol 2023; 46:e20220277. [PMID: 37272834 DOI: 10.1590/1678-4685-gmb-2022-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Long non-coding RNA AK001796 was initially identified altered in lung cancer. Recent research showed it could participate in the prognosis of hepatocellular carcinoma (HCC). However, the general biological role of AK001796 and its underlying mechanisms in HCC remain unclear. Here we demonstrated that the expression level of AK001796 in HCC tissues and cell lines was up-regulated. Silencing AK001796 suppressed the proliferation ability of HCC cells. Through dual luciferase reporter assays and loss/gain of functions studies, we identified that AK001796 could bind to miR-150, a star microRNA, promoting HCC proliferation. Furthermore, it was reported that growth factor receptor binding protein 2-associated binder 1 (GAB1) is a target gene of miR-150. Owing to AK001796 being a decoy for miR-150 and binding the same putative sites of miR-150 as GAB1, we presented that inhibition of miR-150 in AK001796 silencing cells reversed the reduction in GAB1. Subsequently, our findings demonstrated that silencing AK001796 can impair phospho-ERK1/2 and phospho-AKT. In conclusion, our investigation revealed that AK001796 promoted proliferation by enhancing phospho-ERK1/2 and phospho-AKT through AK001796/miR-150/GAB1 axis in HCC. These results provided further evidence for the critical roles of AK001796 accumulating HCC and suggested that AK001796 might act as an HCC biomarker in clinical treatment.
Collapse
Affiliation(s)
- Rui Xu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Haitao He
- Jilin University, College of Basic Medical Sciences, Department of Cell Biology, Changchun, Jilin Province, China
| | - Yue Wang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qi Peng
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Ke Mei
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Yan Liu
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| | - Qing Yang
- Jilin University, College of Basic Medical Sciences, Department of Pathogenobiology, Changchun, Jilin Province, China
| |
Collapse
|
6
|
Li T, Tian Y, Ren W, Chen P, Luo M, Sang H. Gab1 regulates invadopodia and autocrine VEGF through SHP2/ERK1/2 in hilar cholangiocarcinoma cells. Am J Transl Res 2022; 14:8934-8946. [PMID: 36628230 PMCID: PMC9827304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hilar cholangiocarcinoma is the most common malignant tumors of the biliary tract and it has high invasiveness. Invadopodia and autocrine vascular endothelial growth factor (VEGF) are closely related to tumor invasiveness. We investigated the role of Grb2-associated binder 1 (Gab1) in invadopodia and autocrine VEGF in hilar cholangiocarcinoma cells. METHODS The expression of Gab1 and vascular endothelial growth factor receptor 2 (VEGFR-2) in tumor cells was detected by real-time PCR. MTT, flow cytometry and transwell assays were used to determine the effect of Gab1 on the biological behavior of tumor cells. In situ gelatin zymogram, western blotting, ELISA and immunofluorescence were used to study Gab1- and apatinib-regulated invadopodia, epithelial-mesenchymal transition (EMT), and VEGF autocrine signaling through the SHP2/ERK1/2 pathway. RESULTS Gab1 controlled invadopodia maturation via the regulation of cortactin and EMT. Additionally, Gab1-regulated autocrine VEGF was observed in tumor cells expressing VEGFR-2, and endogenous and exogenous VEGF regulated VEGF expression through p-VEGFR-2 nuclear aggregation. Furthermore, the Gab1/SHP2/ERK1/2 axis regulated invadopodia and VEGF autocrine function in tumor cells. Finally, apatinib inhibited the malignant behavior of tumor cells and the nuclear aggregation of p-VEGFR-2 by inhibiting the phosphorylation of VEGFR-2 (direct) and the expression of Gab1 (indirect) in tumor cells. CONCLUSIONS This study demonstrates that Gab1 and apatinib affect tumor cell invadopodia and autocrine VEGF expression through the Gab1/SHP2/ERK1/2 axis in hilar cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, P. R. China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Weiqiang Ren
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Peng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Mingxiao Luo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Haiquan Sang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| |
Collapse
|
7
|
Zhang L, Zuo J, Huang S, Chang Q. Endothelial progenitor cells overexpressing Grb2-associated binder 1 for in vitro-constructed tissue-engineered heart valves. KARDIOLOGIIA 2022; 62:38-43. [PMID: 35989628 DOI: 10.18087/cardio.2022.7.n2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Aim Endothelial progenitor cells (EPCs) play important roles in heart valve replacement surgery. Up-regulation of Grb2‑associated binder 1 (Gab1) promotes hepatocyte growth factor (HGF) - induced endothelial progenitor cell proliferation and migration. This study aimed to investigate the effects of up-regulation of Gab1 in hepatocyte growth factor-induced EPCs in tissue-engineered heart valves (TEHV).Material and methods Fresh porcine aortic valves were placed in 1 % Triton X-100 and trypsin buffer for decellularization. EPCs in the control group were cultured normally, whereas those in the experimental group were both HGF stimulated and transfected with adenovirus containing the Gab1 gene. Cells in the two groups were seeded onto the decellularized valve scaffolds and cultured for 3 or 7 days. TEHV were analyzed by HE and AB-PAS staining.Results By day 3, the experimental group had formed confluent endothelial monolayers on top of the decellularized valves, on the basis of by HE staining and AB-PAS staining. One week later, the control group showed a imperfect endothelial layer.Conclusion HGF-induced EPCs overexpressing Gab1 can endothelialize the decellularized matrix and create functional TEHV, which may then be preconditioned in a bioreactor before clinical implantation.
Collapse
Affiliation(s)
- Liyu Zhang
- Qingdao University; The Affiliated Hospital of Qingdao University
| | - Jianxin Zuo
- Qingdao University; The Affiliated Hospital of Qingdao University
| | - Siyang Huang
- Qingdao University; The Affiliated Hospital of Qingdao University
| | - Qing Chang
- Qingdao University; The Affiliated Hospital of Qingdao University
| |
Collapse
|
8
|
Yan J, Yuan W, Zhang J, Li L, Zhang L, Zhang X, Zhang M. Identification and Validation of a Prognostic Prediction Model in Diffuse Large B-Cell Lymphoma. Front Endocrinol (Lausanne) 2022; 13:846357. [PMID: 35498426 PMCID: PMC9048048 DOI: 10.3389/fendo.2022.846357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group with varied pathophysiological, genetic, and clinical features, accounting for approximately one-third of all lymphoma cases worldwide. Notwithstanding that unprecedented scientific progress has been achieved over the years, the survival of DLBCL patients remains low, emphasizing the need to develop novel prognostic biomarkers for early risk stratification and treatment optimization. METHOD In this study, we screened genes related to the overall survival (OS) of DLBCL patients in datasets GSE117556, GSE10846, and GSE31312 using univariate Cox analysis. Survival-related genes among the three datasets were screened according to the criteria: hazard ratio (HR) >1 or <1 and p-value <0.01. Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analysis were used to optimize and establish the final gene risk prediction model. The TCGA-NCICCR datasets and our clinical cohort were used to validate the performance of the prediction model. CIBERSORT and ssGSEA algorithms were used to estimate immune scores in the high- and low-risk groups. RESULTS We constructed an eight-gene prognostic signature that could reliably predict the clinical outcome in training, testing, and validation cohorts. Our prognostic signature also performed distinguished areas under the ROC curve in each dataset, respectively. After stratification based on clinical characteristics such as cell-of-origin (COO), age, eastern cooperative oncology group (ECOG) performance status, international prognostic index (IPI), stage, and MYC/BCL2 expression, the difference in OS between the high- and low-risk groups was statistically significant. Next, univariate and multivariate analyses revealed that the risk score model had a significant prediction value. Finally, a nomogram was established to visualize the prediction model. Of note, we found that the low-risk group was enriched with immune cells. CONCLUSION In summary, we identified an eight-gene prognostic prediction model that can effectively predict survival outcomes of patients with DLBCL and built a nomogram to visualize the perdition model. We also explored immune alterations between high- and low-risk groups.
Collapse
Affiliation(s)
- Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Yuan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Otorhinolaryngology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Mingzhi Zhang,
| |
Collapse
|
9
|
FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia. Blood 2021; 138:758-772. [PMID: 33786575 DOI: 10.1182/blood.2020008101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Collapse
|
10
|
Zhang XM, Liu ZL, Qiu B, Xu YF, Pan C, Zhang ZL. Downregulation of EVI1 Expression Inhibits Cell Proliferation and Induces Apoptosis in Hilar Cholangiocarcinoma via the PTEN/AKT Signalling Pathway. J Cancer 2020; 11:1412-1423. [PMID: 32047548 PMCID: PMC6995371 DOI: 10.7150/jca.31903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Aims: Hilar cholangiocarcinoma (HCCA) is a tumour with high malignancy, low surgical resection potential, and a poor prognosis. Ecotropic Viral Integration site 1 (EVI1) is a transcriptional regulator that has been proven to be associated with tumourigenesis and progression in many human solid tumours. However, the expression of EVI1 and its role in HCCA progression remain unclear. The aim of this study was to clarify the association between EVI1 expression and clinical outcomes in patients with HCCA. Methods: The expression of EVI1 in HCCA tissue samples and cell lines was examined by quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry (IHC). Kaplan-Meier analysis was used for survival analysis. A log-rank test was performed for univariate analysis of survival, and a Cox regression model was utilized for multivariate analysis of survival. Cell proliferation was measured by cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. The cell cycle was evaluated by flow cytometry. Cell apoptosis was detected by flow cytometry and a terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) assay. In vivo tumour growth was observed for xenografts in nude mice. Results: EVI1 expression was upregulated in HCCA tissue samples and correlated with a poor prognosis. In clinical specimens, the expression of EVI1 correlated with tumour histological grade and tumour size. Knocking down EVI1 expression reduced HCCA cell proliferation, blocked cell cycle progression, and promoted apoptosis in vitro and in vivo. Furthermore, we found that EVI1 could regulate the AKT signalling pathway by regulating PTEN levels in HCCA. Conclusion: Our data revealed that EVI1 played important roles in HCCA tumourigenesis and development. Our findings suggest that EVI1 may be a potentially useful therapeutic target in HCCA.
Collapse
Affiliation(s)
- Xiao-Ming Zhang
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China.,Department of general surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Zeng-Li Liu
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Bo Qiu
- Department of general surgery, Qilu Hospital of Shandong University (Qingdao), 266035, China
| | - Yun-Fei Xu
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Chang Pan
- Department of emergency, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| | - Zong-Li Zhang
- Department of general surgery, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, 250012, China
| |
Collapse
|
11
|
Abdulghani M, Song G, Kaur H, Walley JW, Tuteja G. Comparative Analysis of the Transcriptome and Proteome during Mouse Placental Development. J Proteome Res 2019; 18:2088-2099. [PMID: 30986076 DOI: 10.1021/acs.jproteome.8b00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The condition of the placenta is a determinant of the short- and long-term health of the mother and the fetus. However, critical processes occurring in early placental development, such as trophoblast invasion and establishment of placental metabolism, remain poorly understood. To gain a better understanding of the genes involved in regulating these processes, we utilized a multiomics approach, incorporating transcriptome, proteome, and phosphoproteome data generated from mouse placental tissue collected at two critical developmental time points. We found that incorporating information from both the transcriptome and proteome identifies genes associated with time point-specific biological processes, unlike using the proteome alone. We further inferred genes upregulated on the basis of the proteome data but not the transcriptome data at each time point, leading us to identify 27 genes that we predict to have a role in trophoblast migration or placental metabolism. Finally, using the phosphoproteome data set, we discovered novel phosphosites that may play crucial roles in the regulation of placental transcription factors. By generating the largest proteome and phosphoproteome data sets in the developing placenta, and integrating transcriptome analysis, we uncovered novel aspects of placental gene regulation.
Collapse
Affiliation(s)
- Majd Abdulghani
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Haninder Kaur
- Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Justin W Walley
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Geetu Tuteja
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| |
Collapse
|
12
|
Fan Q, Zhang L, Zhu W, Xue S, Song Y, Chang Q. Up-regulation of Grb2-associated binder 1 promotes hepatocyte growth factor-induced endothelial progenitor cell proliferation and migration. PeerJ 2019; 7:e6675. [PMID: 30956905 PMCID: PMC6442669 DOI: 10.7717/peerj.6675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 01/08/2023] Open
Abstract
Objectives Grb2-associated binder 1 (Gab1), a scaffolding adaptor protein, plays an important role in transmitting key signals that control cell growth, migration, and function from multiple tyrosine kinase receptors. This study was designed to investigate the influence of upregulation of Gab1 in endothelial progenitor cells (EPCs) stimulated with hepatocyte growth factor (HGF), and the underlying molecular mechanisms. Materials and Methods Endothelial progenitor cells isolated from human umbilical cord blood were identified and divided into four groups. EPCs in the Control group were cultured normally; those in the Control+HGF group were treated with HGF stimulation; those in the AD-Gab1 group were transfected with adenovirus containing the Gab1 gene but not treated with HGF stimulation; and, those in the AD-Gab1+HGF group were treated with both HGF stimulation and transfection with adenovirus containing the Gab1 gene. Subsequently, Gab1 expression and proliferation and migration ability were compared for EPCs grown under different conditions. Furthermore, we measured phosphorylation levels of three key proteins Gab1, SHP2, and ERK1/2. Results The AD-Gab1+HGF group had the highest expression of Gab1 and higher proliferation and migration than the other three groups. Conclusions Upregulation of Gab1 promoted HGF-induced EPC proliferation and migration. Mechanistically, HGF stimulated Gab1 tyrosine phosphorylation in EPCs, thus leading to activation of extracellular regulated MAP kinase 1/2, which is involved in proliferation and migration signaling.
Collapse
Affiliation(s)
- Qing Fan
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liyu Zhang
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Zhu
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Xue
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yisheng Song
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Chang
- Qingdao University, Qingdao, China.,Cardiovascular Surgery Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Wang X, Peng J, Yang Z, Zhou PJ, An N, Wei L, Zhu HH, Lu J, Fang YX, Gao WQ. Elevated expression of Gab1 promotes breast cancer metastasis by dissociating the PAR complex. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:27. [PMID: 30665442 PMCID: PMC6341703 DOI: 10.1186/s13046-019-1025-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Breast cancer (BCa) remains as the second leading cause of cancer-related death in women worldwide. The majority of the deaths are due to its progression to metastatic BCa. Although Grb2-associated binding protein 1 (Gab1) has been implicated in tumor proliferation and metastasis in multiple tumors including colorectal cancer, hepatocellular carcinoma and ovarian cancer, whether and how it regulates BCa metastasis are still poorly understood. METHODS Western blot assay and immunohistochemical (IHC) staining were performed to assess expression of Gab1 in primary and metastatic BCa clinical samples. Biological function assay studies in vitro and in vivo were employed to investigate the functions of Gab1 during BCa metastasis. Co-immunoprecipitation (co-IP) assessment, western blot assay and immunofluorescence (IF) staining were carried out to investigate the underlying mechanism for the function of Gab1 on BCa metastasis. RESULTS In this study, we found that expression level of Gab1 was increased significantly in BCa tissue samples compared to that in benign mammary hyperplastic tissues. Furthermore, elevated expression of Gab1 was positively associated with metastasis in HER2 and TNBC subtypes of BCa. In BCa cell line MDA-MB-231 and SK-BR3 cells, stable overexpression of Gab1 promoted, while knockdown of Gab1 inhibited cell migration in vitro and metastasis in vivo. Mechanistically, overexpression of Gab1 enhanced its interaction with Par3, a key component of the polarity-associated partitioning defective (PAR) complex, leading to a dissociation of the PAR complex. Consequently, dissociated PAR complex induced epithelial-to-mesenchymal transition (EMT) for breast tumor metastasis. By restoration assessment, we found that only re-expression of a fully functional Gab1, but not a mutant Gab1 that harbors either Par3 binding-deficiency or Par1b binding-deficiency, could reverse the repressive phenotype of cell migration in vitro and metastasis in vivo due to Gab1 knockdown. CONCLUSIONS Our findings indicate that elevated expression of Gab1 promotes BCa metastasis by dissociating the PAR complex that leads to EMT, implicating a role of Gab1 as a potential biomarker of metastatic BCa. Moreover, inhibition of Gab1 expression might be a promising therapeutic strategy for BCa metastasis.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jing Peng
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ziqiang Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Pei-Jie Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Na An
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lianzi Wei
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinsong Lu
- Department of Breast Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China. .,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
14
|
Li J, Guo L, Chai L, Ai Z. Comprehensive Analysis of Driver Genes in Personal Genomes of Clear Cell Renal Cell Carcinoma. Technol Cancer Res Treat 2019; 18:1533033819830966. [PMID: 30852945 PMCID: PMC6413433 DOI: 10.1177/1533033819830966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
AIM To characterize personal driver genes in clear cell renal cell carcinoma independent of somatic mutation frequencies. METHODS Personal cancer driver genes were predicted by Integrated CAncer GEnome Score in 417 patients with clear cell renal cell carcinoma using 26 786 somatic mutations from The Cancer Genome Atlas, followed by an integrated investigation on personal driver genes. RESULTS A total of 233 personal driver genes were determined by Integrated CAncer GEnome Score. The coexpression network analysis found 5 coexpressed modules. The blue module was significantly negatively correlated with all 5 clinical features, including cancer stage, lymph node metastasis, distant metastasis, age, and survival status (death). CTNNB1, TGFBR2, KDR, FLT1, and INSR were the hub genes in the blue module. The expression of 79 personal driver genes was significantly associated with clinical outcomes of patients with clear cell renal cell carcinoma. CONCLUSIONS The set of personal driver genes sheds insights into the tumorigenesis of clear cell renal cell carcinoma and paves the way for developing personalized medicine for clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Jin Li
- Department of Geriatrics, Shanghai Tenth People’s Hospital, Tongji
University School of Medicine, Shanghai, China
| | - Liping Guo
- Department of Nephrology, The Shanghai Ninth People’s Hospital, Shanghai,
China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji
University School of Medicine, Shanghai, China
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University,
Shanghai, China
| |
Collapse
|
15
|
Sun W, Zhang Z, Wang J, Shang R, Zhou L, Wang X, Duan J, Ruan B, Gao Y, Dai B, Qu S, Liu W, Ding R, Wang L, Wang D, Dou K. MicroRNA-150 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting the GAB1-ERK axis. Oncotarget 2017; 7:11595-608. [PMID: 26871477 PMCID: PMC4905496 DOI: 10.18632/oncotarget.7292] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wei Sun
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Zhou
- Department of General Surgery, The 155th Central Hospital of PLA, Kaifeng, Henan, China
| | - Xing Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Gao
- Department of Hepatobiliary Surgery, The 224th Hospital of PLA, Jiamusi, Heilongjiang, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Bialesova L, Xu L, Gustafsson JÅ, Haldosen LA, Zhao C, Dahlman-Wright K. Estrogen receptor β2 induces proliferation and invasiveness of triple negative breast cancer cells: association with regulation of PHD3 and HIF-1α. Oncotarget 2017; 8:76622-76633. [PMID: 29100336 PMCID: PMC5652730 DOI: 10.18632/oncotarget.20635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022] Open
Abstract
The two estrogen receptor (ER) subtypes, ERα and ERβ, belong to the nuclear receptor superfamily. The human ERβ variant ERβ2 is proposed to be expressed at higher levels than ERβ1 in many breast tumors and it has been suggested that ERβ2, in contrast to ERβ1, is associated with aggressive phenotypes of various cancers. However, the role of endogenous ERβ2 in breast cancer cells remains elusive. In this study, we identified that triple negative breast cancer (TNBC) cell lines express endogenous ERβ2, but not ERα or ERβ1. This allows novel studies of endogenous ERβ2 functions independent of ERα and ERβ1. We show that overexpression of ERβ2 in TNBC cells increased whereas knockdown of endogenous ERβ2 decreased cell proliferation and cell invasion. To elucidate the molecular mechanism responsible for these cellular phenotypes, we assayed ERβ2 dependent global gene expression profiles. We show that ERβ2 decreases prolyl hydroxylase 3 (PHD3) gene expression and further show that this is associated with increased hypoxia inducible factor 1α (HIF-1α) protein levels, thus providing a possible mechanism for the invasive phenotype. These results are further supported by analysing the expression of ERβ2 and PHD3 in breast tumor samples where a negative correlation between ERβ2 and PHD3 expression was observed. Together, we demonstrate that ERβ2 has an important role in enhancing cell proliferation and invasion, beyond modulation of ERβ and ERβ1 signalling which might contribute to the invasive characteristics of TNBC. The invasive phenotype could potentially be mediated through transcriptional repression of PHD3 and increased HIF-1α protein levels.
Collapse
Affiliation(s)
- Lucia Bialesova
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Li Xu
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden.,Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056, USA
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-141 83, Sweden
| |
Collapse
|
17
|
Hu L, Liu R. Expression of Gab1 Is Associated with Poor Prognosis of Patients with Epithelial Ovarian Cancer. TOHOKU J EXP MED 2017; 239:177-84. [PMID: 27302321 DOI: 10.1620/tjem.239.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth factor receptor-bound protein-2 (Grb2) can act as the scaffold protein recruiting other molecules to the stimulated receptors. Grb2-associated binding protein 1 (Gab1) is involved in cell proliferation, and its expression may enhance the carcinogenesis and cancer progression. However, the function of Gab1 remains to be investigated. Epithelial ovarian cancer (EOC) is the most lethal malignancy in the female reproductive system with increasing incidence and unsatisfied overall survival (OS). We investigated the expression of Gab1 in EOC tissues and the correlations between Gab1 expression and the clinicopathological characteristics of patients with EOC using Spearman rank test. The staining results were evaluated based on both the percentage of Gab1-positive tumor cells and the staining intensity for Gab1 expression. Kaplan-Meier survival analysis and Cox proportional hazards analysis were used to compare the postoperative OS between EOC patients with high Gab1 expression and those with low Gab1 expression. The high expression of Gab1 was positively correlated with advanced FIGO stage and lymph node metastasis of EOC. Univariate analysis showed that advanced FIGO stage, pathological grade, lymph node metastasis or Gab1 expression were associated with poor OS. Moreover, multivariate analysis revealed that Gab1 expression could be an independent prognostic factor for the poor OS of EOC patients (P = 0.042). We propose that Gab1 expression is correlated with poor prognosis of EOC patients and may act as an independent prognostic indicator.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Gynecology, Linyi People's Hospital
| | | |
Collapse
|
18
|
Wang J, Song W, Shen W, Yang X, Sun W, Qu S, Shang R, Ma B, Pu M, Tao K, Dou K, Li H. MicroRNA-200a Suppresses Cell Invasion and Migration by Directly Targeting GAB1 in Hepatocellular Carcinoma. Oncol Res 2017; 25:1-10. [PMID: 28081727 PMCID: PMC7840785 DOI: 10.3727/096504016x14685034103798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-200a (miR-200a) is frequently downregulated in most cancer types and plays an important role in carcinogenesis and cancer progression. In this study, we determined that miR-200a was downregulated in hepatocellular carcinoma (HCC) tissues and cell lines, consistent with the results of our previous study. Because a previous study suggested that downregulation of miR-200a is correlated with HCC metastasis, we aimed to elucidate the mechanism underlying the role of miR-200a in metastasis in HCC. Here we observed that overexpression of miR-200a resulted in suppression of HCC metastatic ability, including HCC cell migration, invasion, and metastasis, in vitro and in vivo. Furthermore, bioinformatics and luciferase reporter assays indicated that GAB1 is a direct target of miR-200a. Inhibition of GAB1 resulted in substantially decreased cell invasion and migration similar to that observed with overexpression of miR-200a in HCC cell lines, whereas restoration of GAB1 partially rescued the inhibitory effects of miR-200a. Taken together, these data provide novel information for comprehending the tumor-suppressive role of miR-200a in HCC pathogenesis through inhibition of GAB1 translation.
Collapse
|
19
|
Li J, Guo L, Ai Z. An integrated analysis of cancer genes in clear cell renal cell carcinoma. Future Oncol 2017; 13:715-725. [PMID: 28266251 DOI: 10.2217/fon-2016-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM This study was performed to detect driver genes and implement integrated analyses on these drivers in clear cell renal cell carcinoma (ccRCC). METHODS Driver genes and pathways were predicted by OncodriveFM and Dendrix using 39,636 somatic mutations from The Cancer Genome Atlas, followed by DNA methylation, copy number variation, differential expression and survival analyses. RESULTS Overall, 342 driver genes and 106 pathways were determined by OncodriveFM, two driver genes by Dendrix. 28 driver genes were found hypomethylated, overexpressed and associated to a poor prognosis. By contrast, 17 driver genes showed decreased expression, hypermethylation and indicated a better outcome in ccRCC. CONCLUSION The set of new cancer genes and pathways opens the avenue for developing potential therapeutic targets and prognostic biomarkers in ccRCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Geriatrics, The Shanghai tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Liping Guo
- Department of Nephrology, The Shanghai ninth People's Hospital, Shanghai, China
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
20
|
Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A. Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 2016; 13:13. [PMID: 27307780 PMCID: PMC4908701 DOI: 10.1186/s12014-016-9114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Sneha M Pinto
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Nazia Syed
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014 India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Hitendra S Solanki
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Santosh Renuse
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Sandip Chavan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Arun H Patil
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Harsha Gowda
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Aditi Chatterjee
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| |
Collapse
|
21
|
Gab1 regulates SDF-1-induced progression via inhibition of apoptosis pathway induced by PI3K/AKT/Bcl-2/BAX pathway in human chondrosarcoma. Tumour Biol 2015; 37:1141-9. [PMID: 26276357 DOI: 10.1007/s13277-015-3815-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022] Open
Abstract
In recent decades, the stromal cell-derived factor-l (SDF-1) and Gab1 have been investigated to be involved in oncogenesis. However, it is scarcely reported that SDF-1-Gab1 pathway mediates proliferation and apoptosis in human chondrosarcoma (CS). In this study, we assessed the expression of Gab1 in 90 CS solid tumors by immunohistochemistry, immunoblotting, and qRT-PCR, and then, some in vitro assays were also applied to CS cells treated with SDF-1. We observed that the overexpression of Gab1 was positively correlated with lung metastasis and recurrence, and acts as an independent prognostic factor for CS patients. Gab1 expression was up-regulated in response to SDF-1 stimulation in CS cell line JJ012, SW1353, L3252. Overexpression of Gab1 increased Bcl-2/BAX ratio to promote cell growth via PI3K/AKT. On the other hand, silencing of Gab1 accelerated apoptosis and repressed the growth of CS cells, which further caused the inhibition of G1/S phase transition and decreased invasion capacity in CS cell lines. In vivo assay identified that the knockdown of Gab1 interfered with the tumor mass formation. In conclusion, our data identified overexpression of Gab1 in CS tissues, and Gab1 can be recommended as a novel biomarker for diagnosis and prognosis in patients with CS. Additionally, PI3K/AKT/Bcl-2/BAX axis was involved in Gab1-induced CS progression, indicating Gab1 might act as a new target for the treatment of CS patients.
Collapse
|
22
|
Meng L, Tian Z, Wang Y, Liu Y, Liu J. Predictive and prognostic molecular markers for cholangiocarcinoma in Han Chinese population. Int J Clin Exp Med 2015; 8:13680-9. [PMID: 26550313 PMCID: PMC4612998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
Cholangiocarcinoma (CCA) is the most common malignant heterogeneous polygenetic carcinoma with a high incidence in Asia. Most patients would die within 1 year after diagnosis and the 5 year survival rate is less than 10-20% worldwide. Single nucleotide polymorphisms (SNPs) in genes regulate telomere maintenance, mitosis, and inflammation, and may help predict individual susceptibility to certain drugs, environmental factor, and risks to particular diseases. The gene-gene interaction and the regulation of SNPs have not been assessed extensively in CCA. According to our previous study, the GRB2-associated-binding protein (Gab1) gene rs3805246 (X(2) =5.015, P=0.025, OR=0.531, 95% CI 0.304-0.928) and epidermal growth factor receptor (EGFR) gene rs2007000 (X(2) =7.934, P=0.005, OR=2.148, 95% CI 1.255-3.675) presented significant difference between CCA patients and controls. This study conducted a population-based analysis using 225 CCA cases (153 biliary tract cancer patients and 72 gall bladder cancer patients) to assess the association between SNPs and progression of CCA patients, including the overall survival and the prognosis analysis. Results showed that an increased susceptibility of BTC was significantly associated with SNP loci distribution frequency in EGFR rs2107000 (X(2) =7.934, P=0.005, OR=2.148, 95% CI 1.255-3.675). Furthermore, multivariate factor regression analysis represented cholelithiasis medical history of BTC patients can be an effective evaluation criteria of BTC susceptibility in early stage. This study also assessed the relationship between these genotypic polymorphisms and clinicopathologic data, including tumor differentiation stage and overall survival. This is the first study identifying that EGFR polymorphisms are associated with BTC and EGFR rs2017000 polymorphisms may be an important survival predictor in BTC patients.
Collapse
Affiliation(s)
- Lingqin Meng
- Department of General Surgery, Shengjing Hospital of China Medical University Shenyang 110004, Liaoning, China
| | - Zhong Tian
- Department of General Surgery, Shengjing Hospital of China Medical University Shenyang 110004, Liaoning, China
| | - Yong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University Shenyang 110004, Liaoning, China
| | - Yuan Liu
- Department of General Surgery, Shengjing Hospital of China Medical University Shenyang 110004, Liaoning, China
| | - Jingang Liu
- Department of General Surgery, Shengjing Hospital of China Medical University Shenyang 110004, Liaoning, China
| |
Collapse
|
23
|
Bai R, Weng C, Dong H, Li S, Chen G, Xu Z. MicroRNA-409-3p suppresses colorectal cancer invasion and metastasis partly by targeting GAB1 expression. Int J Cancer 2015; 137:2310-22. [PMID: 25991585 DOI: 10.1002/ijc.29607] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/03/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and its metastasis accounts for the majority of deaths. However, the molecular mechanisms underlying CRC progression are not well characterized. In this study, we identified miR-409-3p as a tumor suppressor of CRC. MiR-409-3p expression was significantly downregulated in CRC tissue compared to adjacent non-tumor tissue, and reduced miR-409-3p expression was correlated with CRC metastasis. In vitro and in vivo studies revealed that miR-409-3p negatively regulated CRC metastatic capacities, including suppressing cancer cell migration, invasion and metastasis. To explore the mechanism of action of miR-409-3p, we adopted a pathway and pathophysiological event-based target screening and validation approach, and found nine known metastasis-related genes as potential targets. The 3'-UTR binding assays between the candidates and miR-409-3p suggested that only GAB1, NR4A2 and LMO4 were directly regulated by the miRNA. However, endogenous expression analysis revealed that only GAB1 was modulated by miR-409-3p in CRC cells at both the mRNA and protein levels. Furthermore, we provided evidence to conclude that GAB1 was partially responsible for miR-409-3p-mediated metastasis. Taken together, our data demonstrate that miR-409-3p is a metastatic suppressor, and post-transcriptional inhibition of the oncoprotein GAB1 is one of the mechanisms of action of this miRNA. Our finding suggests miR-409-3p might be a novel target for CRC metastasis treatment.
Collapse
Affiliation(s)
- Rongpan Bai
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Weng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| | - Haojie Dong
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Li
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Research Center of Molecular Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma. Tumour Biol 2015; 36:8367-77. [PMID: 26014518 DOI: 10.1007/s13277-015-3590-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 01/04/2023] Open
Abstract
Intrahepatic cholangiocarcinoma is the second most common primary malignant tumor of the liver, and it originates from the intrahepatic biliary duct epithelium. Prognosis is poor due to lack of effective comprehensive treatments. In this study, we assessed the expression of Gab1, VEGFR-2, and MMP-9 in intrahepatic cholangiocarcinoma solid tumors by immunohistochemistry and determined whether their expression was associated with clinical and pathological features. We found that expression of Gab1, VEGFR-2, and MMP-9 was highly and positively correlated with each other and with lymph node metastasis and TNM stage in intrahepatic cholangiocarcinoma tissues. Interference of Gab1 and VEGFR-2 expression via siRNA in the intrahepatic cholangiocarcinoma cell line RBE resulted in decreased PI3K/Akt pathway activity. Inhibition of Gab1 and VEGFR-2 expression also caused decreased cell proliferation, cell cycle arrested in G1 phase, increased apoptosis, and decreased invasion in RBE cells. These results suggest that Gab1, VEGFR-2, and MMP-9 contribute significantly to the highly malignant behavior of intrahepatic cholangiocarcinoma. The regulation of growth, apoptosis, and invasion by Gab1 through the VEGFR-2/Gab1/PI3K/Akt signaling pathway may represent potential targets for improving the treatment of intrahepatic cholangiocarcinoma.
Collapse
|
25
|
Combined detection of Gab1 and Gab2 expression predicts clinical outcome of patients with glioma. Med Oncol 2014; 31:77. [PMID: 24998422 DOI: 10.1007/s12032-014-0077-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Grb2-associated binder 1 (Gab1) and Gab2 play important roles in cancer cell signaling. In particular, it has been demonstrated that the upregulation of Gab2 may be correlated with the World Health Organization (WHO) grade of gliomas and that patients with high Gab2 expression levels exhibited shorter survival time. However, the prognostic value of combined expression of Gab1 and Gab2 has not been explored. Gab1 and Gab2 expression in human gliomas and non-neoplastic brain tissues was measured by immunohistochemistry. Both the expression levels of Gab1 and Gab2 proteins in glioma tissues were significantly higher than those in non-neoplastic brain tissues (both P < 0.001). In addition, the overexpression of Gab1 and Gab2 proteins were both significantly associated with advanced WHO grades (both P < 0.001) and low KPS (both P = 0.01). Moreover, the overall survival of patients with high Gab1 protein expression or high Gab2 protein expression was obviously lower than those with low expressions (both P < 0.001). Notably, glioma patients with combined overexpression of Gab1 and Gab2 proteins (Gab1-high/Gab2-high) had shortest overall survival (P < 0.001). Furthermore, multivariate analysis showed that Gab1 expression (P = 0.01), Gab2 expression (P = 0.02), and combined expression of Gab1 and Gab2 (Gab1/Gab2, P = 0.006) were all independent prognostic factors for overall survival in glioma patients. Gab1 and Gab2 proteins are differentially expressed in glioma patients and closely correlated with the biological behavior of this malignancy. Combination of Gab1 and Gab2 expression may represent a promising biomarker for prognostication of human gliomas.
Collapse
|