1
|
Namkaew J, Laowpanitchakorn P, Sawaddee N, Jirajessada S, Honsawek S, Yodmuang S. Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Molecules 2021; 26:578. [PMID: 33499342 PMCID: PMC7865723 DOI: 10.3390/molecules26030578] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cartilage has a limited inherent healing capacity after injury, due to a lack of direct blood supply and low cell density. Tissue engineering in conjunction with biomaterials holds promise for generating cartilage substitutes that withstand stress in joints. A major challenge of tissue substitution is creating a functional framework to support cartilage tissue formation. Polyvinyl alcohol (PVA) was crosslinked with glutaraldehyde (GA), by varying the mole ratios of GA/PVA in the presence of different amounts of plant-derived carboxymethyl cellulose (CMC). Porous scaffolds were created by the freeze-drying technique. The goal of this study was to investigate how CMC incorporation and crosslinking density might affect scaffold pore formation, swelling behaviors, mechanical properties, and potential use for engineered cartilage. The peak at 1599 cm-1 of the C=O group in ATR-FTIR indicates the incorporation of CMC into the scaffold. The glass transition temperature (Tg) and Young's modulus were lower in the PVA/CMC scaffold, as compared to the PVA control scaffold. The addition of CMC modulates the pore architecture and increases the swelling ratio of scaffolds. The toxicity of the scaffolds and cell attachment were tested. The results suggest that PVA/CMC scaffolding material can be tailored in terms of its physical and swelling properties to potentially support cartilage formation.
Collapse
Affiliation(s)
- Jirapat Namkaew
- Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok 10330, Thailand; (J.N.); (N.S.)
| | - Panitporn Laowpanitchakorn
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Nuttapong Sawaddee
- Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok 10330, Thailand; (J.N.); (N.S.)
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand;
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Wang C, Liu W, Shen Y, Chen J, Zhu H, Yang X, Jiang X, Wang Y, Zhou J. Cardiomyocyte dedifferentiation and remodeling in 3D scaffolds to generate the cellular diversity of engineering cardiac tissues. Biomater Sci 2019; 7:4636-4650. [PMID: 31455969 DOI: 10.1039/c9bm01003c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of engineered cardiac tissues (ECTs) is a new strategy for the repair and replacement of cardiac tissues in patients with myocardial infarction, particularly at late stages. However, the mechanisms underlying the development of ECTs, including cell-scaffold interactions, are not fully understood, although they are closely related to their therapeutic effect. In the present study, we aimed to determine the cellular fate of cardiomyocytes in a 3D scaffold microenvironment, as well as their role in generating the cellular diversity of ECTs by single-cell sequencing analysis. Consistent with the observed plasticity of cardiomyocytes during cardiac regeneration, cardiomyocytes in 3D scaffolds appeared to dedifferentiate, showing an initial loss of normal cytoskeleton organization in the adaptive response to the new scaffold microenvironment. Cardiomyocytes undergoing this process regained their proliferation potential and gradually developed into myocardial cells at different developmental stages, generating heterogeneous regenerative ECTs. To better characterize the remodeled ECTs, high-throughput single-cell sequencing was performed. The ECTs contained a wide diversity of cells related to endogenous classes in the heart, including myocardial cells at different developmental stages and different kinds of interstitial cells. Non-cardiac cells seemed to play important roles in cardiac reconstruction, especially Cajal-like interstitial cells and macrophages. Altogether, our results showed for the first time that cells underwent adaptive dedifferentiation for survival in a 3D scaffold microenvironment to generate heterogeneous tissues. These findings provide an important basis for an improved understanding of the development and assembly of engineered tissues.
Collapse
Affiliation(s)
- Changyong Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Wei Liu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yuan Shen
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jiayun Chen
- College of Life Science and Technology, Huazhong Agricultural university, No.1, shizishan street, Wuhan 430070, PR China
| | - Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoning Yang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoxia Jiang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yan Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jin Zhou
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| |
Collapse
|
3
|
Zhao H, Zhang Y, Zhang Y, Shen Y, Zhang Y, Bi F, Xiao B, Zhang H, Ye W, Zhang H, Liao Y. NGF/FAK signal pathway is implicated in angiogenesis after acute cerebral ischemia in rats. Neurosci Lett 2018; 672:96-102. [PMID: 29458087 DOI: 10.1016/j.neulet.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/02/2023]
Abstract
Neurogenesis in the cerebral infarction after an ischemic event is important to the rehabilitation of patients. However, the mechanism of angiogenesis around cerebral ischemia is not clear. Our study designed to test whether the nerve growth factor (NGF)-P-focal adhesion kinase (FAK) signaling pathway for associations with angiogenesis plays a key role in post-acute cerebral ischemia of rats. Firstly, we implanted the Matrigel, a carrier of basement membrane matrix, into the abdominal skin of rats to identify the relevant components of the NGF-P-FAK signaling pathway related to angiogenesis. Secondly, we used a model established by ligation of the middle cerebral artery (MCA) to observe the effect of the same signal pathway on angiogenesis in the subventricular and subgranular zones of the dentate gyrus(SVG and SGZ). The results showed that the tissue scores was significantly increased by NGF. However, the tissue scores was signifcaintly decreased by FAK inhibitor TAE226. Furthermore, CD31 and α-SMA were significantly increased by NGF and were decreased by anti-NGF and TAE226 in Matrigel. The P-FAK protein expression in Matrigel was markedly increased by NGF and decreased by TAE226. In the SVZ and SVG of cerebral ischemia, the numbers of BrdU-positive cells were significantly increased by NGF and decreased by TAE226, respectively. Our findings suggest that the therapy targeting the NGF-P-FAK signaling pathway may be an option for patients suffering from cerebral ischemia.
Collapse
Affiliation(s)
- Haiting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuhu Zhang
- Department of Emergency, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yinghui Zhang
- School of Chemical and Environment Engineering, Wu Yi University, Jiangmen, Guangdong, China
| | - Yue Shen
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Ye
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Honghai Zhang
- Department of Anesthesia, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Mou Y, Lv S, Xiong F, Han Y, Zhao Y, Li J, Gu N, Zhou J. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe 2 O 3 nanoparticles on intercalated discs in engineered cardiac tissues. J Biomed Mater Res B Appl Biomater 2016; 106:121-130. [PMID: 27889952 DOI: 10.1002/jbm.b.33757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Although iron oxide nanoparticles (IRONs) were applied in clinical magnetic resonance imaging in vivo and magnetic tissue engineering in vitro widely, the underlying effects of IRONs on the development of cardiomyocytes especially the intercellular junctions, intercalated discs (IDs), remain an unknown issue. Given the critical role of three-dimensional (3D) engineered cardiac tissues (ECTs) in evaluation of nanoparticles toxicology, it remained necessary to understand the effects of IRONs on IDs assembly of cardiomyocytes in 3D environment. In this study, we first reconstituted collagen/Matrigel based ECTs in vitro and prepared IRONs with 2,3-dimercaptosuccinic acid (DMSA-IRONs). We found that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner was not associated with the cell distribution in 3D environment by determination of Prussian blue staining and transmission electronic microscopy. Significantly, through determination of western blotting and immunofluorescence of connexin 43, N-cadherin, desmoplakin, and plakoglobin, DMSA-IRONs enhanced the assembly of gap junctions, decreased mechanical junctions (adherens junctions and desmosomes) of cardiac cells but not in dose-dependent manner in ECTs at seventh day. In addition, DMSA-IRONs increased the vesicles secretion of cardiac cells in ECTs apparently compared to control groups. Overall, we conclude that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner enhanced the assembly of electrochemical junctions and decreased the mechanical related microstructures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 121-130, 2018.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shuanghong Lv
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Gu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Liu H, Qin W, Wang Z, Shao Y, Wang J, Borg TK, Gao BZ, Xu M. Disassembly of myofibrils and potential imbalanced forces on Z-discs in cultured adult cardiomyocytes. Cytoskeleton (Hoboken) 2016; 73:246-57. [PMID: 27072949 DOI: 10.1002/cm.21298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/08/2022]
Abstract
Myofibrils are the main protein structures that generate force in the beating heart. Myofibril disassembly is related to many physiological and pathological processes. This study investigated, in a cultured rat adult cardiomyocyte model, the effect of force imbalance on myofibril disassembly. The imbalance of forces that were exerted on Z-discs was induced by the synergistic effect of broken intercalated discs and actin-myosin interaction. Cardiomyocytes with well-preserved intercalated discs were isolated from adult rat ventricles. The ultrastructure of cardiomyocyte was observed using a customized two-photon excitation fluorescence and second harmonic generation imaging system. The contraction of cardiomyocytes was recorded with a high-speed CCD camera, and the movement of cellular components was analyzed using a contractile imaging assay technique. The cardiomyocyte dynamic remodeling process was recorded using a time-lapse imaging system. The role of actin-myosin interaction in myofibril disassembly was investigated by incubating cardiomyocytes with blebbistatin (25 μM). Results demonstrated that the hierarchical disassembly process of myofibrils was initiated from cardiomyocyte free ends where intercalated discs had broken, during which the desmin network near the free cell ends was destroyed to release single myofibrils. Analysis of force (based on a schematic model of cardiomyocytes connected at intercalated discs) suggests that breaking of intercalated discs caused force imbalance on both sides of the Z-discs adjacent to the cell ends due to actin-myosin interaction. The damaged intercalated discs and actin-myosin interaction induced force imbalance on both sides of the Z-discs, which played an important role in the hierarchical disassembly of myofibrils. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Honghai Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Wan Qin
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Zhonghai Wang
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingcai Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Bruce Z Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| |
Collapse
|
6
|
Li Q, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, Ott HC, Yarmush ML, Smith LM, Welham NV, Frey BL. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials 2015; 75:37-46. [PMID: 26476196 DOI: 10.1016/j.biomaterials.2015.10.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
A key challenge to the clinical implementation of decellularized scaffold-based tissue engineering lies in understanding the process of removing cells and immunogenic material from a donor tissue/organ while maintaining the biochemical and biophysical properties of the scaffold that will promote growth of newly seeded cells. Current criteria for evaluating whole organ decellularization are primarily based on nucleic acids, as they are easy to quantify and have been directly correlated to adverse host responses. However, numerous proteins cause immunogenic responses and thus should be measured directly to further understand and quantify the efficacy of decellularization. In addition, there has been increasing appreciation for the role of the various protein components of the extracellular matrix (ECM) in directing cell growth and regulating organ function. We performed in-depth proteomic analysis on four types of biological scaffolds and identified a large number of both remnant cellular and ECM proteins. Measurements of individual protein abundances during the decellularization process revealed significant removal of numerous cellular proteins, but preservation of most structural matrix proteins. The observation that decellularized scaffolds still contain many cellular proteins, although at decreased abundance, indicates that elimination of DNA does not assure adequate removal of all cellular material. Thus, proteomic analysis provides crucial characterization of the decellularization process to create biological scaffolds for future tissue/organ replacement therapies.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Castells-Sala C, Martínez-Ramos C, Vallés-Lluch A, Monleón Pradas M, Semino C. in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells. J Biomed Mater Res A 2015; 103:3419-30. [PMID: 25903327 DOI: 10.1002/jbm.a.35482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction.
Collapse
Affiliation(s)
- Cristina Castells-Sala
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Ana Vallés-Lluch
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Carlos Semino
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
8
|
McCain ML, Desplantez T, Kléber AG. Engineering Cardiac Cell JunctionsIn Vitroto Study the Intercalated Disc. ACTA ACUST UNITED AC 2014; 21:181-91. [DOI: 10.3109/15419061.2014.905931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 2014; 9:e94722. [PMID: 24733085 PMCID: PMC3986238 DOI: 10.1371/journal.pone.0094722] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In cardiac muscle, the intercalated disk (ID) at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown. METHODS We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins. RESULTS Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1) and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2) were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much) later stages (two years for Nav1.5 and seven years for Cx43, respectively). CONCLUSION Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43) is not uniform since sodium channels localize much earlier than gap junction channels.
Collapse
|