1
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Abstract
Horses perform in a variety of disciplines that are visually demanding, and any disease impacting the eye has the potential to threaten vision and thus the utility of the horse. Advances in equine genetics have enabled the understanding of some inherited ocular disorders and ocular manifestations and are enabling cross-species comparisons. Genetic testing for multiple congenital ocular anomalies, congenital stationary night blindness, equine recurrent uveitis, and squamous cell carcinoma can identify horses with or at risk for disease and thus can assist in clinical management and breeding decisions. This article describes the current knowledge of inherited ocular disorders.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Abstract
Genetic testing in horses began in the 1960s, when parentage testing using blood group markers became the standard. In the 1990s, parentage testing shifted from evaluating blood groups to DNA testing. The development of genetics and genomics in both human and veterinarian medicine, along with continued technological advances in the last 2 decades, has helped unravel the causal variants for many horse traits. Genetic testing is also now possible for a variety of phenotypic and disease traits and is used to assist in breeding and clinical management decisions. This article describes the genetic tests that are currently available for horses.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Department of Population Health and Reproduction Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Felipe Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
4
|
Lindgren G, Naboulsi R, Frey R, Solé M. Genetics of Skin Disease in Horses. Vet Clin North Am Equine Pract 2020; 36:323-339. [PMID: 32534850 DOI: 10.1016/j.cveq.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Equine skin diseases are common, causing increased costs and reduced welfare of affected horses.Genetic testing, if available, can complement early detection, disease diagnosis, and clinical treatment and offers horse breeders the possibility to rule out carrier status. The mechanisms of complex disease can be investigated by using the latest state-of-the-art genomic technologies. Genome-based strategies may also serve as an efficient and cost-effective strategy for the management of the disease severity levels, with particular interest in complex traits such as insect bite hypersensitivity, chronic progressive lymphedema, and melanoma.
Collapse
Affiliation(s)
- Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden; Livestock Genetics, Department of Biosystems, KU Leuven Leuven, KasteelparkArenberg 30, Leuven 3001, Belgium
| | - Rakan Naboulsi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden
| | - Rebecka Frey
- AniCura Norsholms Djursjukhus, Norsholm 61791, Sweden
| | - Marina Solé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Almas Allé 8, Uppsala 75007, Sweden.
| |
Collapse
|
5
|
De Lucia M, Angileri M, Bauer A, Spycher M, Jaggannathan V, Denti D, Di Diodoro F, Ferro S, Mezzalira G, Welle M, Leeb T. X-linked cutaneous mosaicism in a dog. Vet Dermatol 2019; 30:361-362. [PMID: 31012178 DOI: 10.1111/vde.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michela De Lucia
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy.,San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Martina Angileri
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Melina Spycher
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Vidhya Jaggannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Daria Denti
- San Marco Veterinary Clinic, Via Sorio 114/C, 35141, Padova, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Giorgia Mezzalira
- San Marco Veterinary Laboratory, Via Sorio 114/C, 35141, Padova, Italy
| | - Monika Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
6
|
Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lõugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, Orlando L. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 2018; 360:111-114. [DOI: 10.1126/science.aao3297] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski’s horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age.
Collapse
|
7
|
Genetic Testing as a Tool to Identify Horses with or at Risk for Ocular Disorders. Vet Clin North Am Equine Pract 2017; 33:627-645. [DOI: 10.1016/j.cveq.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Bauer A, De Lucia M, Jagannathan V, Mezzalira G, Casal ML, Welle MM, Leeb T. A Large Deletion in the NSDHL Gene in Labrador Retrievers with a Congenital Cornification Disorder. G3 (BETHESDA, MD.) 2017; 7:3115-3121. [PMID: 28739597 PMCID: PMC5592936 DOI: 10.1534/g3.117.1124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 11/18/2022]
Abstract
In heterozygous females affected by an X-linked skin disorder, lesions often appear in a characteristic pattern, the so-called Blaschko's lines. We investigated a female Labrador Retriever and her crossbred daughter, which both showed similar clinical lesions that followed Blaschko's lines. The two male littermates of the affected daughter had died at birth, suggesting a monogenic X-chromosomal semidominant mode of inheritance. Whole genome sequencing of the affected daughter, and subsequent automated variant filtering with respect to 188 nonaffected control dogs of different breeds, revealed 332 hetero-zygous variants on the X-chromosome private to the affected dog. None of these variants was protein-changing. By visual inspection of candidate genes located on the X-chromosome, we identified a large deletion in the NSDHL gene, encoding NAD(P) dependent steroid dehydrogenase-like, a 3β-hydroxysteroid dehydrogenase involved in cholesterol biosynthesis. The deletion spanned >14 kb, and included the last three exons of the NSDHL gene. By PCR and fragment length analysis, we confirmed the presence of the variant in both affected dogs, and its absence in 50 control Labrador Retrievers. Variants in the NSDHL gene cause CHILD syndrome in humans, and the bare patches (Bpa) and striated (Str) phenotypes in mice. Taken together, our genetic data and the known role of NSDHL in X-linked skin disorders strongly suggest that the identified structural variant in the NSDHL gene is causative for the phenotype in the two affected dogs.
Collapse
Affiliation(s)
- Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | | | - Margret L Casal
- Section of Medical Genetics, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Monika M Welle
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, 3001, Switzerland
| |
Collapse
|
9
|
Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thèves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques-Bonet T, Ludes B, Crubézy E, Leeb T, Willerslev E, Orlando L. Ancient genomic changes associated with domestication of the horse. Science 2017; 356:442-445. [DOI: 10.1126/science.aam5298] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Ancient genomics of horse domesticationThe domestication of the horse was a seminal event in human cultural evolution. Libradoet al.obtained genome sequences from 14 horses from the Bronze and Iron Ages, about 2000 to 4000 years ago, soon after domestication. They identified variants determining coat color and genes selected during the domestication process. They could also see evidence of admixture with archaic horses and the demography of the domestication process, which included the accumulation of deleterious variants. The horse appears to have undergone a different type of domestication process than animals that were domesticated simply for food.Science, this issue p.442
Collapse
Affiliation(s)
- Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Cristina Gamba
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Charleen Gaunitz
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Mélanie Pruvost
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris Diderot, 75205 Paris cedex 13, France
| | - Anders Albrechtsen
- Bioinformatics Center, Department of Biology, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Antoine Fages
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Naveed Khan
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | | | - Aitor Serres-Armero
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Lukas F. K. Kuderna
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Inna S. Povolotskaya
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- National High-Throughput DNA Sequencing Center, Copenhagen, Denmark
| | - Sébastien Lepetz
- Centre National de la Recherche Scientifique, Muséum national d’histoire naturelle, Sorbonne Universités, Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (UMR 7209), 55 rue Buffon, 75005 Paris, France
| | | | - Catherine Thèves
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Saleh Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed H. Alfarhan
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Stefan Rieder
- Agroscope, Swiss National Stud Farm, 1580 Avenches, Switzerland
| | - Zainolla Samashev
- Branch of Institute of Archaeology Margulan, Republic Avenue 24-405, 010000 Astana, Republic of Kazakhstan
| | - Henri-Paul Francfort
- CNRS, UMR 7041 Archéologie et Sciences de l’Antiquité, Archéologie de l'Asie Centrale, Maison René Ginouvès, 21 allée de l’Université, 92023 Nanterre, France
| | - Norbert Benecke
- German Archaeological Institute, Department of Natural Sciences, Berlin, 14195 Berlin, Germany
| | - Michael Hofreiter
- University of Potsdam, Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Christine Keyser
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
- Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - Bertrand Ludes
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
- Institut Médico-Légal, Université Paris Descartes, Paris, France
| | - Eric Crubézy
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350K Copenhagen, Denmark
- Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, 31000 Toulouse, France
| |
Collapse
|
10
|
An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture. G3-GENES GENOMES GENETICS 2016; 6:2963-70. [PMID: 27449517 PMCID: PMC5015953 DOI: 10.1534/g3.116.032433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.
Collapse
|
11
|
Leeb T, Müller EJ, Roosje P, Welle M. Genetic testing in veterinary dermatology. Vet Dermatol 2016; 28:4-e1. [PMID: 27425028 DOI: 10.1111/vde.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular genetics has made significant advances in the analysis of hereditary dermatoses during the last several years. OBJECTIVES To provide an update on currently available genetic tests for skin diseases of dogs, cats and horses, and to aid the veterinary clinician in the appropriate selection and applications of genetic tests. METHODS The scientific literature on the topic was critically reviewed. The list of known causative variants for genodermatoses and hair morphology traits was compiled by searching the Online Mendelian Inheritance in Animals (OMIA) database. RESULTS Genetic testing has become an important diagnostic method in veterinary medicine. Genetic tests can help to establish the correct diagnosis in some diseases with relatively nonspecific signs. Genetic tests are also essential for sustainable breeding programmes and to help minimize the frequency of animals with hereditary diseases. Advances in genetic methodology and bioinformatics already allow genome-wide screening for potential disease causing mutations for research purposes. It is anticipated that this will become a routine process in clinical practice in the future. CONCLUSION AND CLINICAL IMPORTANCE As specific DNA tests and broad genome-wide analyses come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results.
Collapse
Affiliation(s)
- Tosso Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Eliane J Müller
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland.,Department of Dermatology, Inselspital, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Monika Welle
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland
| |
Collapse
|
12
|
Murgiano L, Shirokova V, Welle MM, Jagannathan V, Plattet P, Oevermann A, Pienkowska-Schelling A, Gallo D, Gentile A, Mikkola M, Drögemüller C. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation. PLoS Genet 2015. [PMID: 26203908 PMCID: PMC4512707 DOI: 10.1371/journal.pgen.1005427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal species, we identified TSR2 as a regulator of hair follicle development. The identification of causal mutations of rare monogenic disorders provides an insight into the function of single genes. We herein report an example which demonstrates that the bovine species presents an excellent system for identifying these inherited phenotypes. The individual health status of modern dairy cows is well monitored, and emerging disorders are routinely recorded. An Italian breeder of ~500 Pezzata Rossa cattle reported a case of congenital streaked hairlessness. Three additional, closely related cows, showing similar hairless pattern following Blaschko’s lines were subsequently observed. A causative mutation was discovered in a previously uncharacterized rRNA processing gene. Cows possessing a single copy of this TSR2 mutation located on the X chromosome showed a mosaic skin pattern which is very likely due to the skewed inactivation of the X-chromosome, also known as lyonization. The expression of TSR2 was shown in skin and hair of cattle and mice. This study is the first to implicate an essential role for TSR2 during hair follicle development and reflects once more the potential of using rare diseases in cows to gain additional insights into mammalian biology.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Vera Shirokova
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Monika Maria Welle
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Daniele Gallo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Italy
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, Italy
| | - Marja Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Frischknecht M, Neuditschko M, Jagannathan V, Drögemüller C, Tetens J, Thaller G, Leeb T, Rieder S. Imputation of sequence level genotypes in the Franches-Montagnes horse breed. Genet Sel Evol 2014; 46:63. [PMID: 25927638 PMCID: PMC4180851 DOI: 10.1186/s12711-014-0063-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions. METHODS We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute. RESULTS The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%. CONCLUSIONS Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.
Collapse
Affiliation(s)
- Mirjam Frischknecht
- Agroscope - Swiss National Stud Farm, 1580, Avenches, Switzerland. .,Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland. .,Graduate School for Cellular and Molecular Biology, University of Bern, 3012, Bern, Switzerland.
| | - Markus Neuditschko
- Agroscope - Swiss National Stud Farm, 1580, Avenches, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland.
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany.
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany.
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland.
| | - Stefan Rieder
- Agroscope - Swiss National Stud Farm, 1580, Avenches, Switzerland. .,Swiss Competence Center of Animal Breeding and Genetics, University of Bern, Bern University of Applied Sciences HAFL & Agroscope, 3001, Bern, Switzerland.
| |
Collapse
|
14
|
Metzger J, Tonda R, Beltran S, Agueda L, Gut M, Distl O. Next generation sequencing gives an insight into the characteristics of highly selected breeds versus non-breed horses in the course of domestication. BMC Genomics 2014; 15:562. [PMID: 24996778 PMCID: PMC4097168 DOI: 10.1186/1471-2164-15-562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/24/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces. RESULTS Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses. CONCLUSIONS Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.
Collapse
Affiliation(s)
| | | | | | | | | | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany.
| |
Collapse
|