1
|
Melkus G, Sizovs A, Rucevskis P, Silina S. Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks. J Comput Biol 2024; 31:589-596. [PMID: 38768423 DOI: 10.1089/cmb.2024.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.
Collapse
Affiliation(s)
- Gatis Melkus
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Andrejs Sizovs
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Peteris Rucevskis
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| | - Sandra Silina
- Institute of Mathematics and Computer Science, University of Latvia, Riga, Latvia
| |
Collapse
|
2
|
Chiliński M, Sengupta K, Plewczynski D. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect. Semin Cell Dev Biol 2021; 121:171-185. [PMID: 34429265 DOI: 10.1016/j.semcdb.2021.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The three-dimensional structure of the human genome has been proven to have a significant functional impact on gene expression. The high-order spatial chromatin is organised first by looping mediated by multiple protein factors, and then it is further formed into larger structures of topologically associated domains (TADs) or chromatin contact domains (CCDs), followed by A/B compartments and finally the chromosomal territories (CTs). The genetic variation observed in human population influences the multi-scale structures, posing a question regarding the functional impact of structural variants reflected by the variability of the genes expression patterns. The current methods of evaluating the functional effect include eQTLs analysis which uses statistical testing of influence of variants on spatially close genes. Rarely, non-coding DNA sequence changes are evaluated by their impact on the biomolecular interaction network (BIN) reflecting the cellular interactome that can be analysed by the classical graph-theoretic algorithms. Therefore, in the second part of the review, we introduce the concept of BIN, i.e. a meta-network model of the complete molecular interactome developed by integrating various biological networks. The BIN meta-network model includes DNA-protein binding by the plethora of protein factors as well as chromatin interactions, therefore allowing connection of genomics with the downstream biomolecular processes present in a cell. As an illustration, we scrutinise the chromatin interactions mediated by the CTCF protein detected in a ChIA-PET experiment in the human lymphoblastoid cell line GM12878. In the corresponding BIN meta-network the DNA spatial proximity is represented as a graph model, combined with the Proteins-Interaction Network (PIN) of human proteome using the Gene Association Network (GAN). Furthermore, we enriched the BIN with the signalling and metabolic pathways and Gene Ontology (GO) terms to assert its functional context. Finally, we mapped the Single Nucleotide Polymorphisms (SNPs) from the GWAS studies and identified the chromatin mutational hot-spots associated with a significant enrichment of SNPs related to autoimmune diseases. Afterwards, we mapped Structural Variants (SVs) from healthy individuals of 1000 Genomes Project and identified an interesting example of the missing protein complex associated with protein Q6GYQ0 due to a deletion on chromosome 14. Such an analysis using the meta-network BIN model is therefore helpful in evaluating the influence of genetic variation on spatial organisation of the genome and its functional effect in a cell.
Collapse
Affiliation(s)
- Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Halder AK, Denkiewicz M, Sengupta K, Basu S, Plewczynski D. Aggregated network centrality shows non-random structure of genomic and proteomic networks. Methods 2020; 181-182:5-14. [PMID: 31740366 DOI: 10.1016/j.ymeth.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Network analysis is a powerful tool for modelling biological systems. We propose a new approach that integrates the genomic interaction data at population level with the proteomic interaction data. In our approach we use chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data from human genome to construct a set of genomic interaction networks, considering the natural partitioning of chromatin into chromatin contact domains (CCD). The genomic networks are then mapped onto proteomic interactions, to create protein-protein interaction (PPI) subnetworks. Furthermore, the network-based topological properties of these proteomic subnetworks are investigated, namely closeness centrality, betweenness centrality and clustering coefficient. We statistically confirm, that networks identified by our method significantly differ from random networks in these network properties. Additionally, we identify one of the regions, namely chr6:32014923-33217929, as having an above-random concentration of the single nucleotide polymorphisms (SNPs) related to autoimmune diseases. Then we present it in the form of a meta-network, which includes multi-omic data: genomic contact sites (anchors), genes, proteins and SNPs. Using this example we demonstrate, that the created networks provide a valid mapping of genes to SNPs, expanding on the raw SNP dataset used.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
| | - Michał Denkiewicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Kaustav Sengupta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Computer Science Department, University of California, 2063 Kemper Hall, One Shields Avenue, Davis, CA 95616-8562, United States.
| |
Collapse
|
4
|
Moreira-Filho CA, Bando SY, Bertonha FB, Ferreira LR, Vinhas CDF, Oliveira LHB, Zerbini MCN, Furlanetto G, Chaccur P, Carneiro-Sampaio M. Minipuberty and Sexual Dimorphism in the Infant Human Thymus. Sci Rep 2018; 8:13169. [PMID: 30177771 PMCID: PMC6120939 DOI: 10.1038/s41598-018-31583-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
AIRE expression in thymus is downregulated by estrogen after puberty, what probably renders women more susceptible to autoimmune disorders. Here we investigated the effects of minipuberty on male and female infant human thymic tissue in order to verify if this initial transient increase in sex hormones - along the first six months of life - could affect thymic transcriptional network regulation and AIRE expression. Gene co-expression network analysis for differentially expressed genes and miRNA-target analysis revealed sex differences in thymic tissue during minipuberty, but such differences were not detected in the thymic tissue of infants aged 7-18 months, i.e. the non-puberty group. AIRE expression was essentially the same in both sexes in minipuberty and in non-puberty groups, as assessed by genomic and immunohistochemical assays. However, AIRE-interactors networks showed several differences in all groups regarding gene-gene expression correlation. Therefore, minipuberty and genomic mechanisms interact in shaping thymic sexual dimorphism along the first six months of life.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Departament of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Paulo Chaccur
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP, Brazil
| | - Magda Carneiro-Sampaio
- Departament of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Tsochatzidou M, Malliarou M, Papanikolaou N, Roca J, Nikolaou C. Genome urbanization: clusters of topologically co-regulated genes delineate functional compartments in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:5818-5828. [PMID: 28369650 PMCID: PMC5449599 DOI: 10.1093/nar/gkx198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 02/01/2023] Open
Abstract
The eukaryotic genome evolves under the dual constraint of maintaining coordinated gene transcription and performing effective DNA replication and cell division, the coupling of which brings about inevitable DNA topological tension. DNA supercoiling is resolved and, in some cases, even harnessed by the genome through the function of DNA topoisomerases, as has been shown in the concurrent transcriptional activation and suppression of genes upon transient deactivation of topoisomerase II (topoII). By analyzing a genome-wide transcription run-on experiment upon thermal inactivation of topoII in Saccharomyces cerevisiae we were able to define 116 gene clusters of consistent response (either positive or negative) to topological stress. A comprehensive analysis of these topologically co-regulated gene clusters reveals pronounced preferences regarding their functional, regulatory and structural attributes. Genes that negatively respond to topological stress, are positioned in gene-dense pericentromeric regions, are more conserved and associated to essential functions, while upregulated gene clusters are preferentially located in the gene-sparse nuclear periphery, associated with secondary functions and under complex regulatory control. We propose that genome architecture evolves with a core of essential genes occupying a compact genomic ‘old town’, whereas more recently acquired, condition-specific genes tend to be located in a more spacious ‘suburban’ genomic periphery.
Collapse
Affiliation(s)
- Maria Tsochatzidou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Maria Malliarou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Nikolas Papanikolaou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Christoforos Nikolaou
- Computational Genomics Group, Department of Biology, University of Crete, Herakleion 70013, Greece
| |
Collapse
|
6
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
7
|
Pancaldi V, Carrillo-de-Santa-Pau E, Javierre BM, Juan D, Fraser P, Spivakov M, Valencia A, Rico D. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Genome Biol 2016; 17:152. [PMID: 27391817 PMCID: PMC4939006 DOI: 10.1186/s13059-016-1003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts. RESULTS We use high-resolution promoter capture Hi-C and Hi-Cap data as well as ChIA-PET data from mouse embryonic stem cells to investigate promoter-centered chromatin interaction networks and calculate the presence of specific epigenomic features in the chromatin fragments constituting the nodes of the network. We estimate the association of these features with the topology of four chromatin interaction networks and identify features localized in connected areas of the network. Polycomb group proteins and associated histone marks are the features with the highest chromatin assortativity in promoter-centered networks. We then ask which features distinguish contacts amongst promoters from contacts between promoters and other genomic elements. We observe higher chromatin assortativity of the actively elongating form of RNA polymerase 2 (RNAPII) compared with inactive forms only in interactions between promoters and other elements. CONCLUSIONS Contacts among promoters and between promoters and other elements have different characteristic epigenomic features. We identify a possible role for the elongating form of RNAPII in mediating interactions among promoters, enhancers, and transcribed gene bodies. Our approach facilitates the study of multiple genome-wide epigenomic profiles, considering network topology and allowing the comparison of chromatin interaction networks.
Collapse
Affiliation(s)
- Vera Pancaldi
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | | | | | - David Juan
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Rico
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
8
|
|
9
|
Moreira-Filho CA, Bando SY, Bertonha FB, Iamashita P, Silva FN, Costa LDF, Silva AV, Castro LHM, Wen HT. Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures. PLoS One 2015; 10:e0128174. [PMID: 26011637 PMCID: PMC4444281 DOI: 10.1371/journal.pone.0128174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system's constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery.
Collapse
Affiliation(s)
| | - Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Luiz Henrique Martins Castro
- Department of Neurology, FMUSP, São Paulo, SP, Brazil
- Clinical Neurology Division, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas, FMUSP, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Tapia-Alveal C, Lin SJ, O’Connell MJ. Functional interplay between cohesin and Smc5/6 complexes. Chromosoma 2014; 123:437-45. [PMID: 24981336 PMCID: PMC4169997 DOI: 10.1007/s00412-014-0474-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.
Collapse
Affiliation(s)
- Claudia Tapia-Alveal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Su-Jiun Lin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew J. O’Connell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|