1
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
2
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
3
|
Hassan BA, Milicaj J, Ramirez-Mondragon CA, Sham YY, Taylor EA. Ligand-Induced Conformational and Dynamical Changes in a GT-B Glycosyltransferase: Molecular Dynamics Simulations of Heptosyltransferase I Complexes. J Chem Inf Model 2022; 62:324-339. [PMID: 34967618 PMCID: PMC8864558 DOI: 10.1021/acs.jcim.1c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the dynamical motions and ligand recognition motifs of heptosyltransferase I (HepI) can be critical to discerning the behavior of other glycosyltransferase (GT) enzymes. Prior studies in our lab have demonstrated that GTs in the GT-B structural class, which are characterized by their connection of two Rossman-like domains by a linker region, have conserved structural fold and dynamical motions, despite low sequence homology, therefore making discoveries found in HepI transferable to other GT-B enzymes. Through molecular dynamics simulations and ligand binding free energy analysis of HepI in the apo and bound complexes (for all kinetically relevant combinations of the native substrates/products), we have determined the energetically favored enzymatic pathway for ligand binding and release. Our principal component, dynamic cross correlation, and network analyses of the simulations have revealed correlated motions involving residues within the N-terminal domain communicating with C-terminal domain residues via both proximal amino acid residues and also functional groups of the bound substrates. Analyses of the structural changes, energetics of substrate/product binding, and changes in pKa have elucidated a variety of inter and intradomain interactions that are critical for enzyme catalysis. These data corroborate our experimental observations of protein conformational changes observed in both presteady state kinetic and circular dichroism analyses of HepI. These simulations provided invaluable structural insights into the regions involved in HepI conformational rearrangement upon ligand binding. Understanding the specific interactions governing conformational changes is likely to enhance our efforts to develop novel dynamics disrupting inhibitors against GT-B structural enzymes in the future.
Collapse
Affiliation(s)
- Bakar A. Hassan
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Carlos Andres Ramirez-Mondragon
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuk Yin Sham
- Department of Integrative Biology and Physiology, Medical School and Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erika A. Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Ramirez-Mondragon CA, Nguyen ME, Milicaj J, Hassan BA, Tucci FJ, Muthyala R, Gao J, Taylor EA, Sham YY. Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics. Int J Mol Sci 2021; 22:ijms22094619. [PMID: 33924837 PMCID: PMC8124905 DOI: 10.3390/ijms22094619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022] Open
Abstract
It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.
Collapse
Affiliation(s)
- Carlos A. Ramirez-Mondragon
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
| | - Megin E. Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
| | - Jozafina Milicaj
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Bakar A. Hassan
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Frank J. Tucci
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
| | - Ramaiah Muthyala
- Department of Experimental and Clinical Pharmacology, College Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jiali Gao
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
- Department of Chemistry, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Erika A. Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA; (J.M.); (B.A.H.); (F.J.T.)
- Correspondence: (E.A.T.); (Y.Y.S.); Tel.: +1-(860)-685-2739 (E.A.T.); +1-(612)-625-6255 (Y.Y.S.); Fax: +1-(860)-685-2211 (E.A.T.); +1-(612)-625-5149 (Y.Y.S.)
| | - Yuk Y. Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA; (C.A.R.-M.); (M.E.N.); (J.G.)
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (E.A.T.); (Y.Y.S.); Tel.: +1-(860)-685-2739 (E.A.T.); +1-(612)-625-6255 (Y.Y.S.); Fax: +1-(860)-685-2211 (E.A.T.); +1-(612)-625-5149 (Y.Y.S.)
| |
Collapse
|
5
|
Essential Mycoplasma Glycolipid Synthase Adheres to the Cell Membrane by Means of an Amphipathic Helix. Sci Rep 2019; 9:7085. [PMID: 31068620 PMCID: PMC6506492 DOI: 10.1038/s41598-019-42970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/22/2022] Open
Abstract
Because of the lack of cell wall, Micoplasma species require a fine control of membrane fluidity and integrity. mg517 is an essential gene of Mycoplasma genitalium responsible for the biosynthesis of membrane glycoglycerolipids. It encodes for a unique glycosyltransferase (MG517) with processive activity, transferring activated glycosyl donors to either nude diacylglycerol or already glycosylated diacylglycerol. This dual activity, asserted to different enzymes in other species, is sensitive to and regulated by the presence of anionic lipid vesicles in vitro. We present here a computational model of the C-terminus domain of MG517 that complements a previous structural model of the N-terminus domain. By means of sequence analysis, molecular dynamics and metadynamics simulations, we have identified a short α-helix at the apical C-terminus of MG517 with clear amphipathic character. Binding to a membrane model is thermodynamically favored which suggests that this structural element guides the adhesion of MG517 to the cell membrane. We have experimentally verified that truncation of part of this helix causes a substantial reduction of glycoglycerolipids synthesis. The model proposes that MG517 recognizes and binds the diacylglycerol substrate embedded in the membrane by means of this α-helix at the C-terminus together with a previously identified binding pocket at the N-terminus.
Collapse
|
6
|
Mandawe J, Infanzon B, Eisele A, Zaun H, Kuballa J, Davari MD, Jakob F, Elling L, Schwaneberg U. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid. Chembiochem 2018; 19:1414-1423. [PMID: 29603528 DOI: 10.1002/cbic.201800093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/20/2023]
Abstract
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge-gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain-length specificity and a twofold increase in mass-based turnover number. Seven improved pmHAS variants out of 1392 generated by error-prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell-free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N-terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.
Collapse
Affiliation(s)
- John Mandawe
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belen Infanzon
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Anna Eisele
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Henning Zaun
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Lothar Elling
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
7
|
Albesa-Jové D, Romero-García J, Sancho-Vaello E, Contreras FX, Rodrigo-Unzueta A, Comino N, Carreras-González A, Arrasate P, Urresti S, Biarnés X, Planas A, Guerin ME. Structural Snapshots and Loop Dynamics along the Catalytic Cycle of Glycosyltransferase GpgS. Structure 2017. [PMID: 28625787 DOI: 10.1016/j.str.2017.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycosyltransferases (GTs) play a central role in nature. They catalyze the transfer of a sugar moiety to a broad range of acceptor substrates. GTs are highly selective enzymes, allowing the recognition of subtle structural differences in the sequences and stereochemistry of their sugar and acceptor substrates. We report here a series of structural snapshots of the reaction center of the retaining glucosyl-3-phosphoglycerate synthase (GpgS). During this sequence of events, we visualize how the enzyme guides the substrates into the reaction center where the glycosyl transfer reaction takes place, and unveil the mechanism of product release, involving multiple conformational changes not only in the substrates/products but also in the enzyme. The structural data are further complemented by metadynamics free-energy calculations, revealing how the equilibrium of loop conformations is modulated along these itineraries. The information reported here represent an important contribution for the understanding of GT enzymes at the molecular level.
Collapse
Affiliation(s)
- David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Javier Romero-García
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Enea Sancho-Vaello
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - F-Xabier Contreras
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Ane Rodrigo-Unzueta
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Ana Carreras-González
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain
| | - Pedro Arrasate
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Saioa Urresti
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Bioengineering Department, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
8
|
Sobhanifar S, Worrall LJ, King DT, Wasney GA, Baumann L, Gale RT, Nosella M, Brown ED, Withers SG, Strynadka NCJ. Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance. PLoS Pathog 2016; 12:e1006067. [PMID: 27973583 PMCID: PMC5156392 DOI: 10.1371/journal.ppat.1006067] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/15/2016] [Indexed: 01/05/2023] Open
Abstract
In recent years, there has been a growing interest in teichoic acids as targets for antibiotic drug design against major clinical pathogens such as Staphylococcus aureus, reflecting the disquieting increase in antibiotic resistance and the historical success of bacterial cell wall components as drug targets. It is now becoming clear that β-O-GlcNAcylation of S. aureus wall teichoic acids plays a major role in both pathogenicity and antibiotic resistance. Here we present the first structure of S. aureus TarS, the enzyme responsible for polyribitol phosphate β-O-GlcNAcylation. Using a divide and conquer strategy, we obtained crystal structures of various TarS constructs, mapping high resolution overlapping N-terminal and C-terminal structures onto a lower resolution full-length structure that resulted in a high resolution view of the entire enzyme. Using the N-terminal structure that encapsulates the catalytic domain, we furthermore captured several snapshots of TarS, including the native structure, the UDP-GlcNAc donor complex, and the UDP product complex. These structures along with structure-guided mutants allowed us to elucidate various catalytic features and identify key active site residues and catalytic loop rearrangements that provide a valuable platform for anti-MRSA drug design. We furthermore observed for the first time the presence of a trimerization domain composed of stacked carbohydrate binding modules, commonly observed in starch active enzymes, but adapted here for a poly sugar-phosphate glycosyltransferase. Historically, β-lactam class antibiotics such as methicillin have been very successful in the treatment of bacterial infections, effectively destroying bacteria by rupturing their cell walls while posing little harm to the human organism. In recent years, however, the alarming emergence of Methicillin Resistant S. aureus or MRSA has resulted in a world-wide health crisis, calling on new strategies to combat pathogenesis and antibiotic resistance. As such, understanding the pathways and players that orchestrate resistance is important for overcoming these mechanisms and restoring our powerful β-lactam antibiotic arsenal. In this article we describe the crystal structure of TarS, an enzyme responsible for the glycosylation of wall teichoic acid polymers of the S. aureus cell wall, a process that has been shown to be specifically responsible for methicillin resistance in MRSA. TarS is therefore a promising drug target whose inhibition in combinational therapies would result in MRSA re-sensitization to β-lactam antibiotics. Here we present the first structure of TarS together with several snap-shots of its substrate/product complexes, and elucidate important catalytic features that are valuable for rational drug design efforts to combat resistance in MRSA.
Collapse
Affiliation(s)
- Solmaz Sobhanifar
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam J. Worrall
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dustin T. King
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory A. Wasney
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lars Baumann
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert T. Gale
- Department of Chemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Nosella
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric D. Brown
- Department of Chemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC. Design and synthesis of a minimal bacterial genome. Science 2016; 351:aad6253. [DOI: 10.1126/science.aad6253] [Citation(s) in RCA: 838] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/05/2016] [Indexed: 12/17/2022]
|