1
|
Rodrigues TCML, Dias AL, dos Santos AMF, Messias Monteiro AF, Oliveira MCN, Oliveira Pires HF, de Sousa NF, Salvadori MGDSS, Scotti MT, Scotti L. Multi-target Phenylpropanoids Against Epilepsy. Curr Neuropharmacol 2024; 22:2168-2190. [PMID: 38847378 PMCID: PMC11337686 DOI: 10.2174/1570159x22666240524160126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 06/13/2024] Open
Abstract
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Aline Matilde Ferreira dos Santos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Alex France Messias Monteiro
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Mayara Cecile Nascimento Oliveira
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
- Teaching and Research Management, University Hospital Lauro Wanderley, Federal University of Paraíba, 58050-585, João Pessoa, PB, Brazil
| |
Collapse
|
2
|
Andrade López JM, Pani AM, Wu M, Gerhart J, Lowe CJ. Molecular characterization of nervous system organization in the hemichordate acorn worm Saccoglossus kowalevskii. PLoS Biol 2023; 21:e3002242. [PMID: 37725784 PMCID: PMC10508912 DOI: 10.1371/journal.pbio.3002242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023] Open
Abstract
Hemichordates are an important group for investigating the evolution of bilaterian nervous systems. As the closest chordate outgroup with a bilaterally symmetric adult body plan, hemichordates are particularly informative for exploring the origins of chordates. Despite the importance of hemichordate neuroanatomy for testing hypotheses on deuterostome and chordate evolution, adult hemichordate nervous systems have not been comprehensively described using molecular techniques, and classic histological descriptions disagree on basic aspects of nervous system organization. A molecular description of hemichordate nervous system organization is important for both anatomical comparisons across phyla and for attempts to understand how conserved gene regulatory programs for ectodermal patterning relate to morphological evolution in deep time. Here, we describe the basic organization of the adult hemichordate Saccoglossus kowalevskii nervous system using immunofluorescence, in situ hybridization, and transgenic reporters to visualize neurons, neuropil, and key neuronal cell types. Consistent with previous descriptions, we found the S. kowalevskii nervous system consists of a pervasive nerve plexus concentrated in the anterior, along with nerve cords on both the dorsal and ventral side. Neuronal cell types exhibited clear anteroposterior and dorsoventral regionalization in multiple areas of the body. We observed spatially demarcated expression patterns for many genes involved in synthesis or transport of neurotransmitters and neuropeptides but did not observe clear distinctions between putatively centralized and decentralized portions of the nervous system. The plexus shows regionalized structure and is consistent with the proboscis base as a major site for information processing rather than the dorsal nerve cord. In the trunk, there is a clear division of cell types between the dorsal and ventral cords, suggesting differences in function. The absence of neural processes crossing the basement membrane into muscle and extensive axonal varicosities suggest that volume transmission may play an important role in neural function. These data now facilitate more informed neural comparisons between hemichordates and other groups, contributing to broader debates on the origins and evolution of bilaterian nervous systems.
Collapse
Affiliation(s)
- José M. Andrade López
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ariel M. Pani
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Mike Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, Unites States of America
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley, California, Unites States of America
| | - Christopher J. Lowe
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
3
|
Kim WS, Kwak IS. EDCs trigger immune-neurotransmitter related gene expression, and cause histological damage in sensitive mud crab Macrophthalmus japonicus gills and hepatopancreas. FISH & SHELLFISH IMMUNOLOGY 2022; 122:484-494. [PMID: 35150829 DOI: 10.1016/j.fsi.2022.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), distributed at various concentrations in freshwater and marine ecosystems, affect the survival, reproduction, and behavior of wide ranges organisms. Most toxicology studies on EDCs have focused on the endocrine system of invertebrates, and research on invertebrate neurotransmitters is limited. In the present study, we investigated the expression of Macrophthalmus japonicus genes encoding γ-aminobutyric acid transporter subtype 2 (GAT-2) and glutamine synthetase (GS), which play important roles as neurotransmitters at synapses. We observed differences in the mRNA expression levels of GAT-2 and GS as well as histological changes in various tissues after exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP). The amino acid sequences of M. japonicus GAT-2 and GS formed separate branches in crustaceans, fish, insects, and mammals. M. japonicus GAT-2 and GS expression levels were highest in the gills, hepatopancreas, and stomach, and showed different between DEHP or BPA treatments. In particular, hepatopancreas GS expression on Day 1, the first step in the presynaptic process, was upregulated after BPA and DEHP exposure, while GAT-2, sequential step in the presynaptic process, was significantly elevated only in DEHP. After BPA treatments, gill GS expression was increased at all concentrations, whereas GAT-2 expression was overall down regulations. In contrast, in DEHP treatment groups hepatopancreatic GS and GAT-2 expression at Day 1 was only significantly higher and all groups including gill GS and GAT-2 expression were downregulation. Histological changes in the gills and hepatopancreas were observed in a concentration-dependent manner. Accordingly, BPA and DEHP exposure in crabs could be stimulate neurotransmitter gene expression and alter the morphological structure of gill and hepatopancreas.
Collapse
Affiliation(s)
- Won-Seok Kim
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
4
|
Kuroda M, Nagasaki T, Koito T, Hongo Y, Yoshida T, Maruyama T, Tsuchida S, Nemoto S, Inoue K. Possible Roles of Hypotaurine and Thiotaurine in the Vesicomyid Clam Phreagena okutanii. THE BIOLOGICAL BULLETIN 2021; 240:34-40. [PMID: 33730534 DOI: 10.1086/712396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractVesicomyid clams, which inhabit deep-sea hydrothermal vents and hydrocarbon seeps, are nutritionally dependent on symbiotic, chemoautotrophic bacteria that produce organic matter by using hydrogen sulfide. Vesicomyid clams absorb hydrogen sulfide from the foot and transport it in their hemolymph to symbionts in the gill. However, mechanisms to cope with hydrogen sulfide toxicity are not fully understood. Previous studies on vent-specific invertebrates, including bathymodiolin mussels, suggest that hypotaurine, a precursor of taurine, mitigates hydrogen sulfide toxicity by binding it to bisulfide ion, so as to synthesize thiotaurine. In this study, we cloned cDNAs from the vesicomyid clam Phreagena okutanii for the taurine transporter that transports hypotaurine into cells and for cysteine dioxygenase and cysteine-sulfinate decarboxylase, major enzymes involved in hypotaurine synthesis. Results of reverse-transcription polymerase chain reaction indicate that mRNAs of these three genes are most abundant in the foot, followed by the gill. However, hypotaurine and thiotaurine levels, measured by reverse-phase high-performance liquid chromatography, were low in the foot and high in the gill. In addition, thiotaurine was detected in hemolymph cells. Hypotaurine synthesized in the foot may be transported to the gill after binding to bisulfide ion, possibly by hemolymph cells.
Collapse
|
5
|
Fattorini G, Melone M, Conti F. A Reappraisal of GAT-1 Localization in Neocortex. Front Cell Neurosci 2020; 14:9. [PMID: 32116556 PMCID: PMC7031676 DOI: 10.3389/fncel.2020.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
γ-Aminobutyric acid (GABA) transporter (GAT)-1, the major GABA transporter in the brain, plays a key role in modulating GABA signaling and is involved in the pathophysiology of several neuropsychiatric diseases, including epilepsy. The original description of GAT-1 as a neuronal transporter has guided the interpretation of the findings of all physiological, pharmacological, genetic, or clinical studies. However, evidence published in the past few years, some of which is briefly reviewed herein, does not seem to be consistent with a neurocentric view of GAT-1 function and calls for more detailed analysis of its localization. We therefore performed a thorough systematic assessment of GAT-1 localization in neocortex and subcortical white matter. In line with earlier work, we found that GAT-1 was robustly expressed in axon terminals forming symmetric synapses and in astrocytic processes, whereas its astrocytic expression was more diffuse than expected and, even more surprisingly, immature and mature oligodendrocytes and microglial cells also expressed the transporter. These data indicate that the era of “neuronal” and “glial” GABA transporters has finally come to a close and provide a wider perspective from which to view GABA-mediated physiological phenomena. In addition, given the well-known involvement of astrocytes, oligodendrocytes, and microglial cells in physiological as well as pathological conditions, the demonstration of functional GAT-1 in these cells is expected to provide greater insight into the phenomena occurring in the diseased brain as well as to prompt a reassessment of earlier findings.
Collapse
Affiliation(s)
- Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.,Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Bouchard C, Boudko DY, Jiang RHY. A SLC6 transporter cloned from the lion's mane jellyfish (Cnidaria, Scyphozoa) is expressed in neurons. PLoS One 2019; 14:e0218806. [PMID: 31233570 PMCID: PMC6590891 DOI: 10.1371/journal.pone.0218806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of recent comparative genomic studies conducted on nervous systems across the phylogeny, current thinking is leaning in favor of more heterogeneity among nervous systems than what was initially expected. The isolation and characterization of molecular components that constitute the cnidarian neuron is not only of interest to the physiologist but also, on a larger scale, to those who study the evolution of nervous systems. Understanding the function of those ancient neurons involves the identification of neurotransmitters and their precursors, the description of nutrients used by neurons for metabolic purposes and the identification of integral membrane proteins that bind to those compounds. Using a molecular cloning strategy targeting membrane proteins that are known to be present in all forms of life, we isolated a member of the solute carrier family 6 from the scyphozoan jellyfish Cyanea capillata. The phylogenetic analysis suggested that the new transporter sequence belongs to an ancestral group of the nutrient amino acid transporter subfamily and is part of a cluster of cnidarian sequences which may translocate the same substrate. We found that the jellyfish transporter is expressed in neurons of the motor nerve net of the animal. To this end, we established an in situ hybridization protocol for the tissues of C. capillata and developed a specific antibody to the jellyfish transporter. Finally, we showed that the gene that codes for the jellyfish transporter also expresses a long non-coding RNA. We hope that this research will contribute to studies that seek to understand what constitutes a neuron in species that belong to an ancient phylum.
Collapse
Affiliation(s)
- Christelle Bouchard
- College of Science and Mathematics, University of South Florida, Sarasota, Florida, United States of America
| | - Dmitri Y. Boudko
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois, United States of America
| | - Rays H. Y. Jiang
- Global and Planetary Health, College of Public Health, University of South Florida USF Genomics Program, Tampa, Florida, United States of America
| |
Collapse
|
7
|
Kinjo A, Sassa M, Koito T, Suzuki M, Inoue K. Functional characterization of the GABA transporter GAT-1 from the deep-sea mussel Bathymodiolus septemdierum. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:1-7. [PMID: 30195015 DOI: 10.1016/j.cbpa.2018.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Mammalian γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) is a specific transporter for GABA, an inhibitory neurotransmitter in GABA-ergic neurons. GAT-1 belongs to the GAT group, in which five related transporters, GAT-2, GAT-3, GAT-4, CT1, and TAUT are known in mammals. By contrast, the deep-sea mussel, Bathymodiolus septemdierum has only two GAT group members, BsGAT-1 and BsTAUT, and their function in environmental adaptation is of interest to better understand the physiology of deep-sea organisms. Compared with BsTAUT, the function of BsGAT-1 is unknown. Here, we report the functional characterization of BsGAT-1. Analyses of BsGAT-1 expressed in Xenopus oocytes showed that it could transport GABA in a Na+- and Cl--dependent manner, with Km and Vmax values of 0.58 μM and 1.97 pmol/oocyte/h, respectively. BsGAT-1 activity was blocked by the GAT-1 selective inhibitors SKF89976A and ACHC. Competition assays indicated that BsGAT-1 has no affinity for taurine and thiotaurine. These characteristics were common with those of mammalian GAT-1, suggesting its conserved function in the nervous system. However, BsGAT-1 showed a certain affinity for hypotaurine, which is involved in sulfide detoxification in hydrothermal vent-specific animals. This result suggests an additional role for BsGAT-1 in sulfide detoxification, which may be specific to the deep-sea mussel. In a tissue distribution analysis, BsGAT-1 mRNA expression was observed in various tissues. The expression in the adductor and byssus retractor muscles, labial palp, and foot, which possibly contain ganglia, suggested a function in the neural system, while BsGAT-1 expression in other tissues might be related to sulfide detoxification.
Collapse
Affiliation(s)
- Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan.
| | - Mieko Sassa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
| | - Tomoko Koito
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| | - Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan
| |
Collapse
|
8
|
Borycz J, Ziegler A, Borycz JA, Uhlenbrock G, Tapken D, Caceres L, Hollmann M, Hovemann BT, Meinertzhagen IA. Location and functions of Inebriated in the Drosophila eye. Biol Open 2018; 7:7/7/bio034926. [PMID: 30037884 PMCID: PMC6078345 DOI: 10.1242/bio.034926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histamine (HA) is a neurotransmitter in arthropod photoreceptors. It is recycled via conjugation to β-alanine to form β-alanylhistamine (carcinine). Conjugation occurs in epithelial glia that surround photoreceptor terminals in the first optic neuropil, and carcinine (CA) is then transported back to photoreceptors and cleaved to liberate HA and β-alanine. The gene Inebriated (Ine) encodes an Na+/Cl--dependent SLC6 family transporter translated as two protein isoforms, long (P1) and short (P2). Photoreceptors specifically express Ine-P2 whereas Ine-P1 is expressed in non-neuronal cells. Both ine1 and ine3 have significantly reduced head HA contents compared with wild type, and a smaller increase in head HA after drinking 1% CA. Similarly, uptake of 0.1% CA was reduced in ine1 and ine3 mutant synaptosomes, but increased by 90% and 84% respectively for fractions incubated in 0.05% β-Ala, compared with wild type. Screening potential substrates in Ine expressing Xenopus oocytes revealed very little response to carcinine and β-Ala but increased conductance with glycine. Both ine1 and ine3 mutant responses in light-dark phototaxis did not differ from wild-type. Collectively our results suggest that Inebriated functions in an adjunct role as a transporter to the previously reported carcinine transporter CarT.
Collapse
Affiliation(s)
- Janusz Borycz
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Anna Ziegler
- Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Jolanta A Borycz
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Guido Uhlenbrock
- Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Daniel Tapken
- Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Lucia Caceres
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Michael Hollmann
- Molecular Cell Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Bernhard T Hovemann
- Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada .,Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Identification and characterization of the Fasciola hepatica sodium- and chloride-dependent taurine transporter. PLoS Negl Trop Dis 2018; 12:e0006428. [PMID: 29702654 PMCID: PMC5942844 DOI: 10.1371/journal.pntd.0006428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The parasitic liver fluke Fasciola hepatica infests mainly ruminants, but it can also cause fasciolosis in people, who ingest the metacercariae encysted on plants. The drug of choice to treat fasciolosis is triclabendazole (TBZ), which has been on the market for several decades. This is also true for the other available drugs. Accordingly, drug-resistant flukes have been emerging at an increasing rate making it desirable to identify alternative drug targets. Here, we focused on the fact that adult F. hepatica persists in the hostile environment of the bile ducts of infected organisms. A common way to render bile acids less toxic is to conjugate them to taurine (2-aminoethanesulfonic acid). We cloned a transporter from the solute carrier-6 (SLC6) family, which was most closely related to the GABA-transporter-2 of other organisms. When heterologously expressed, this F. hepatica transporter supported the high-affinity cellular uptake of taurine (KM = 12.0 ± 0.5 μM) but not of GABA. Substrate uptake was dependent on Na+- and Cl- (calculated stoichiometry 2:1). Consistent with the low chloride concentration in mammalian bile, the F. hepatica transporter had a higher apparent affinity for Cl- (EC50 = 14±3 mM) than the human taurine transporter (EC50 = 55±7 mM). We incubated flukes with unconjugated bile acids in the presence and absence of taurine: taurine promoted survival of flukes; the taurine transporter inhibitor guanidinoethansulfonic acid abolished this protective effect of taurine. Based on these observations, we conclude that the taurine transporter is critical for the survival of liver flukes in the bile. Thus, the taurine transporter represents a candidate drug target.
Collapse
|
10
|
Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW. Hedgehog signaling regulates gene expression in planarian glia. eLife 2016; 5:e16996. [PMID: 27612382 PMCID: PMC5055395 DOI: 10.7554/elife.16996] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Sylvain W Lapan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - M Lucila Scimone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Peter W Reddien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
11
|
Nakamura-Kusakabe I, Nagasaki T, Kinjo A, Sassa M, Koito T, Okamura K, Yamagami S, Yamanaka T, Tsuchida S, Inoue K. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:74-79. [DOI: 10.1016/j.cbpa.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/16/2023]
|
12
|
Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. Amino Acids 2014; 47:571-8. [PMID: 25501502 DOI: 10.1007/s00726-014-1891-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.
Collapse
|
13
|
Melone M, Ciappelloni S, Conti F. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front Neuroanat 2014; 8:72. [PMID: 25120439 PMCID: PMC4110517 DOI: 10.3389/fnana.2014.00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/08/2014] [Indexed: 12/05/2022] Open
Abstract
Cortical GABAergic synapses exhibit a high degree of molecular, anatomical and functional heterogeneity of their neurons of origins, presynaptic mechanisms, receptors, and scaffolding proteins. GABA transporters (GATs) have an important role in regulating GABA levels; among them, GAT-1 and GAT-3 play a prominent role in modulating tonic and phasic GABAAR-mediated inhibition. We asked whether GAT-1 and GAT-3 contribute to generating heterogeneity by studying their ultrastructural localization at cortical symmetric synapses using pre- and post-embedding electron microcopy. GAT-1 and GAT-3 staining at symmetric synapses showed that in some cases the transporters were localized exclusively over axon terminals; in others they were in both axon terminals and perisynaptic astrocytic processes; and in some others GAT-1 and GAT-3 were in perisynaptic astrocytic processes only. Moreover, we showed that the organizational pattern of GAT-1, but not of GAT-3, exhibits a certain degree of specificity related to the post-synaptic target of GABAergic synapses. These findings show that symmetric synapses expressing GAT-1 or GAT-3 are heterogeneous, and indicate that plasma membrane transporters can contribute to synaptic heterogeneity.
Collapse
Affiliation(s)
- Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy ; Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy
| | - Silvia Ciappelloni
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy ; Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy ; Foundation for Molecular Medicine, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|