1
|
Bhardwaj A, Prasad D, Mukherjee S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 2024; 82:91-105. [PMID: 37853249 DOI: 10.1007/s12013-023-01191-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Ananya Bhardwaj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Divya Prasad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhukova M, Schedl P, Shidlovskii YV. The role of secondary structures in the functioning of 3' untranslated regions of mRNA: A review of functions of 3' UTRs' secondary structures and hypothetical involvement of secondary structures in cytoplasmic polyadenylation in Drosophila. Bioessays 2024; 46:e2300099. [PMID: 38161240 PMCID: PMC11337203 DOI: 10.1002/bies.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
3' untranslated regions (3' UTRs) of mRNAs have many functions, including mRNA processing and transport, translational regulation, and mRNA degradation and stability. These different functions require cis-elements in 3' UTRs that can be either sequence motifs or RNA structures. Here we review the role of secondary structures in the functioning of 3' UTRs and discuss some of the trans-acting factors that interact with these secondary structures in eukaryotic organisms. We propose potential participation of 3'-UTR secondary structures in cytoplasmic polyadenylation in the model organism Drosophila melanogaster. Because the secondary structures of 3' UTRs are essential for post-transcriptional regulation of gene expression, their disruption leads to a wide range of disorders, including cancer and cardiovascular diseases. Trans-acting factors, such as STAU1 and nucleolin, which interact with 3'-UTR secondary structures of target transcripts, influence the pathogenesis of neurodegenerative diseases and tumor metastasis, suggesting that they are possible therapeutic targets.
Collapse
Affiliation(s)
- Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Russian Academy of Sciences, Institute of Gene Biology, Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Ge F, Hu J, Zhu YH, Arif M, Yu DJ. TargetMM: Accurate Missense Mutation Prediction by Utilizing Local and Global Sequence Information with Classifier Ensemble. Comb Chem High Throughput Screen 2022; 25:38-52. [PMID: 33280588 DOI: 10.2174/1386207323666201204140438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Missense mutation (MM) may lead to various human diseases by disabling proteins. Accurate prediction of MM is important and challenging for both protein function annotation and drug design. Although several computational methods yielded acceptable success rates, there is still room for further enhancing the prediction performance of MM. MATERIALS AND METHODS In the present study, we designed a new feature extracting method, which considers the impact degree of residues in the microenvironment range to the mutation site. Stringent cross-validation and independent test on benchmark datasets were performed to evaluate the efficacy of the proposed feature extracting method. Furthermore, three heterogeneous prediction models were trained and then ensembled for the final prediction. By combining the feature representation method and classifier ensemble technique, we reported a novel MM predictor called TargetMM for identifying the pathogenic mutations from the neutral ones. RESULTS Comparison outcomes based on statistical evaluation demonstrate that TargetMM outperforms the prior advanced methods on the independent test data. The source codes and benchmark datasets of TargetMM are freely available at https://github.com/sera616/TargetMM.git for academic use.
Collapse
Affiliation(s)
- Fang Ge
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,China
| | - Jun Hu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023,China
| | - Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,China
| | - Muhammad Arif
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094,China
| |
Collapse
|
4
|
Ge F, Muhammad A, Yu DJ. DeepnsSNPs: Accurate prediction of non-synonymous single-nucleotide polymorphisms by combining multi-scale convolutional neural network and residue environment information. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2021; 215:104326. [DOI: 10.1016/j.chemolab.2021.104326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
|
5
|
Williams SM, An JY, Edson J, Watts M, Murigneux V, Whitehouse AJO, Jackson CJ, Bellgrove MA, Cristino AS, Claudianos C. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol Psychiatry 2019; 24:1707-1719. [PMID: 29703944 DOI: 10.1038/s41380-018-0049-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/16/2018] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.
Collapse
Affiliation(s)
- Sarah M Williams
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Joon Yong An
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Department of Psychiatry, University of California San Francisco, San Francisco, USA.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| | - Janette Edson
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Michelle Watts
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, Australia.,Cooperative Research Centre for Living with Autism, Brisbane, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Alexandre S Cristino
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.
| | - Charles Claudianos
- Queensland Brain Institute, University of Queensland, Brisbane, Australia. .,Centre for Mental Health Research CMHR, Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Neil CR, Fairbrother WG. Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194439. [PMID: 31682938 DOI: 10.1016/j.bbagrm.2019.194439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Christopher R Neil
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America
| | - William G Fairbrother
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America; Center for Computational Molecular Biology, Brown University, Providence, RI, United States of America.
| |
Collapse
|
7
|
He F, Wei R, Zhou Z, Huang L, Wang Y, Tang J, Zou Y, Shi L, Gu X, Davis MJ, Su Z. Integrative Analysis of Somatic Mutations in Non-coding Regions Altering RNA Secondary Structures in Cancer Genomes. Sci Rep 2019; 9:8205. [PMID: 31160636 PMCID: PMC6546760 DOI: 10.1038/s41598-019-44489-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
RNA secondary structure may influence many cellular processes, including RNA processing, stability, localization, and translation. Single-nucleotide variations (SNVs) that alter RNA secondary structure, referred to as riboSNitches, are potentially causative of human diseases, especially in untranslated regions (UTRs) and noncoding RNAs (ncRNAs). The functions of somatic mutations that act as riboSNitches in cancer development remain poorly understood. In this study, we developed a computational pipeline called SNIPER (riboSNitch-enriched or depleted elements in cancer genomes), which employs MeanDiff and EucDiff to detect riboSNitches and then identifies riboSNitch-enriched or riboSNitch-depleted non-coding elements across tumors. SNIPER is available at github: https://github.com/suzhixi/SNIPER/. We found that riboSNitches were more likely to be pathogenic. Moreover, we predicted several UTRs and lncRNAs (long non-coding RNA) that significantly enriched or depleted riboSNitches in cancer genomes, indicative of potential cancer driver or essential noncoding elements. Our study highlights the possibly neglected importance of RNA secondary structure in cancer genomes and provides a new strategy to identify new cancer-associated genes.
Collapse
Affiliation(s)
- Funan He
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ran Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leihuan Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yinan Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jie Tang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yangyun Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Leming Shi
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Shanghai Cancer Center and Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,Singlera Genomics Inc, Shanghai, China.
| |
Collapse
|
8
|
Eiberg H, Mikkelsen AF, Bak M, Tommerup N, Lund AM, Wenzel A, Sabarinathan R, Gorodkin J, Bang-Berthelsen CH, Hansen L. A splice-site variant in the lncRNA gene RP1-140A9.1 cosegregates in the large Volkmann cataract family. Mol Vis 2019; 25:1-11. [PMID: 30820140 PMCID: PMC6377377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/17/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose To identify the mutation for Volkmann cataract (CTRCT8) at 1p36.33. Methods The genes in the candidate region 1p36.33 were Sanger and parallel deep sequenced, and informative single nucleotide polymorphisms (SNPs) were identified for linkage analysis. Expression analysis with reverse transcription polymerase chain reaction (RT-PCR) of the candidate gene was performed using RNA from different human tissues. Quantitative transcription polymerase chain reaction (qRT-PCR) analysis of the GNB1 gene was performed in affected and healthy individuals. Bioinformatic analysis of the linkage regions including the candidate gene was performed. Results Linkage analysis of the 1p36.33 CCV locus applying new marker systems obtained with Sanger and deep sequencing reduced the candidate locus from 2.1 Mb to 0.389 Mb flanked by the markers STS-22AC and rs549772338 and resulted in an logarithm of the odds (LOD) score of Z = 21.67. The identified mutation, rs763295804, affects the donor splice site in the long non-coding RNA gene RP1-140A9.1 (ENSG00000231050). The gene including splice-site junctions is conserved in primates but not in other mammalian genomes, and two alternative transcripts were shown with RT-PCR. One of these transcripts represented a lens cell-specific transcript. Meta-analysis of the Cross-Linking-Immuno-Precipitation sequencing (CLIP-Seq) data suggested the RNA binding protein (RBP) eIF4AIII is an active counterpart for RP1-140A9.1, and several miRNA and transcription factors binding sites were predicted in the proximity of the mutation. ENCODE DNase I hypersensitivity and histone methylation and acetylation data suggest the genomic region may have regulatory functions. Conclusions The mutation in RP1-140A9.1 suggests the long non-coding RNA as the candidate cataract gene associated with the autosomal dominant inherited congenital cataract from CCV. The mutation has the potential to destroy exon/intron splicing of both transcripts of RP1-140A9.1. Sanger and massive deep resequencing of the linkage region failed to identify alternative candidates suggesting the mutation in RP1-140A9.1 is causative for the CCV phenotype.
Collapse
Affiliation(s)
- Hans Eiberg
- RCLINK, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Annemette F. Mikkelsen
- RCLINK, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johansen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Allan M. Lund
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Wenzel
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Radhakrishnan Sabarinathan
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Claus H. Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
9
|
Abstract
Translational repression and degradation of transcripts by microRNAs (miRNAs) is mediated by a ribonucleoprotein complex called the miRNA-induced silencing complex (miRISC, or RISC). Advances in experimental determination of RISC structures have enabled detailed analysis and modeling of known miRNA targets, yet a full appreciation of the structural factors influencing target recognition remains a challenge, primarily because target recognition involves a combination of RNA-RNA and RNA-protein interactions that can vary greatly among different miRNA-target pairs. In this chapter, we review progress toward understanding the role of tertiary structure in miRNA target recognition using computational approaches to assemble RISC complexes at known targets and physics-based methods for computing target interactions. Using this framework to examine RISC structures and dynamics, we describe how the conformational flexibility of Argonautes plays an important role in accommodating the diversity of miRNA-target duplexes formed at canonical and noncanonical target sites. We then discuss applications of tertiary structure-based approaches to emerging topics, including the structural effects of SNPs in miRNA targets and cooperative interactions involving Argonaute-Argonaute complexes. We conclude by assessing the prospects for genome-scale modeling of RISC structures and modeling of higher-order Argonaute complexes associated with miRNA biogenesis, mRNA regulation, and other functions.
Collapse
Affiliation(s)
- Hin Hark Gan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Kristin C Gunsalus
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA.
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
11
|
Soemedi R, Cygan KJ, Rhine CL, Glidden DT, Taggart AJ, Lin CL, Fredericks AM, Fairbrother WG. The effects of structure on pre-mRNA processing and stability. Methods 2017; 125:36-44. [PMID: 28595983 DOI: 10.1016/j.ymeth.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA molecules can form a variety of structures, and both secondary and tertiary structures have important effects on processing, function and stability of these molecules. The prediction of RNA secondary structure is a challenging problem and various algorithms that use minimum free energy, maximum expected accuracy and comparative evolutionary based methods have been developed to predict secondary structures. However, these tools are not perfect, and this remains an active area of research. The secondary structure of pre-mRNA molecules can have an enhancing or inhibitory effect on pre-mRNA splicing. An example of enhancing structure can be found in a novel class of introns in zebrafish. About 10% of zebrafish genes contain a structured intron that forms a bridging hairpin that enforces correct splice site pairing. Negative examples of splicing include local structures around splice sites that decrease splicing efficiency and potentially cause mis-splicing leading to disease. Splicing mutations are a frequent cause of hereditary disease. The transcripts of disease genes are significantly more structured around the splice sites, and point mutations that increase the local structure often cause splicing disruptions. Post-splicing, RNA secondary structure can also affect the stability of the spliced intron and regulatory RNA interference pathway intermediates, such as pre-microRNAs. Additionally, RNA secondary structure has important roles in the innate immune defense against viruses. Finally, tertiary structure can also play a large role in pre-mRNA splicing. One example is the G-quadruplex structure, which, similar to secondary structure, can either enhance or inhibit splicing through mechanisms such as creating or obscuring RNA binding protein sites.
Collapse
Affiliation(s)
- Rachel Soemedi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Kamil J Cygan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Christy L Rhine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - David T Glidden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Alger M Fredericks
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| |
Collapse
|
12
|
Zhang HQ, Li MH, Gao P, Lan PH, Fan B, Xiao X, Lu YJ, Chen GJ, Wang Z. Preliminary Application of Precision Genomic Medicine Detecting Gene Variation in Patients with Multifocal Osteosarcoma. Orthop Surg 2017; 8:129-38. [PMID: 27384721 DOI: 10.1111/os.12249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/07/2016] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The purpose of this study was to present our clinical experience of treating multifocal osteosarcoma (MFOS) in our center and gain more insight into the biology of this rare condition; in particular, to address with the help of precision genomic medicine the issue of whether the multiple osteosarcoma (OS) lesions in such patients are multi-centric or originate from one primary lesion and metastasize to other sites. Finally, we aimed to identify particular gene phenotypes and mutations that differentiate MFOS from OS with only one tumor. METHODS Clinical data of patients with MFOS treated at our center between June 2007 and October 2014 were collected and analyzed retrospectively. High throughput sequencing of the whole exome of normal tissue and multiple lesions had been performed on samples from two patients (HJF and JZ) diagnosed in 2014. To explore the particular gene phenotype and clinical significance of MFOS, these sequencing results were analyzed and compared with those from patients with osteosarcoma in a single site. Seven patients with MFOS (three male and four female; average age 19.71 ± 3.35 years were enrolled in this study. Two of these patients declined treatment and died after 4 and 6 months, respectively. The remaining patients received standard treatment comprising neoadjuvant chemotherapy, surgery and chemotherapy. The chemotherapy regimen was lobaplatin (45 mg/m(2) ), doxorubicin (60 mg/m(2) ) and ifosfamide (12 g/m(2) ). Patients were followed up every 3 months after completing treatment and evaluated by the Enneking and Response Evaluation Criteria in Solid Tumors scoring systems. RESULTS Up to the last follow-up on 1 December 2015, three patients were still alive. The event-free survival ranged from 4 to 144 weeks (median, 50.14 weeks), the mean (±SD) being 55.45 ± 45.47 weeks. Overall survival ranged from 16 to 388 weeks (median, 89 weeks; mean ± SD, 118.7 ± 147.7 weeks). The rates of mutation of the targeted drug-related genes were 133.5% ± 3.0% in the proximal tibia lesion and 113.1% ± 1.9% in the distal femur of patient HJF (P < 0.01) and 136.1% ± 10.8% in the proximal tibial lesion and 122.3% ± 5.5% in the proximal humerus of patient JZ (P = 0.0335). Furthermore, there were several anti-oncogenes in the somatic copy number variation lists analyzed from the two patients, especially TP53. However, no kataegis was found. CONCLUSIONS Early and radical surgery accompanied by appropriate chemotherapy is the optimal means of treating MFOS. These patients may benefit from precision genomic medicine.
Collapse
Affiliation(s)
- Hao-Qiang Zhang
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Ming-Hui Li
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Peng Gao
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Ping-Heng Lan
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Bo Fan
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Ya-Jie Lu
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Guo-Jing Chen
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Zhen Wang
- Department of Orthopaedics, Xijing Hospital, Forth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Abstract
RNA molecules have emerged as key players in nearly every facet of gene regulation. Such functions are governed by RNA's unique ability to fold into intricate secondary and tertiary structures. In order to understand, on the molecular level, how such structures from several chemical and enzymatic methods have been developed. One such method is RNA Selective Hydroxyl Acylation analyzed by Primer Extension, or SHAPE. SHAPE has emerged as a premier method of measuring RNA structure, with recent developments extending SHAPE into living cells. Here, we describe the use of SHAPE for measuring RNA structure inside living cells.
Collapse
|
14
|
Meng Q, Ren M, Li Y, Song X. LncRNA-RMRP Acts as an Oncogene in Lung Cancer. PLoS One 2016; 11:e0164845. [PMID: 27906963 PMCID: PMC5132297 DOI: 10.1371/journal.pone.0164845] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/01/2016] [Indexed: 12/31/2022] Open
Abstract
Accumulating studies have demonstrated that long noncoding RNAs (lncRNAs) act a crucial role in the development of tumors. However, the role of lncRNAs in lung cancer remains largely unknown. In this study, we demonstrated that theexpression of RMRP was upregulated in lung adenocarcinoma tissues compared to the matched adjacent normal tissues. Moreover, of 35 lung adenocarcinoma samples, RMRP expression was upregulated in 25 cases (25/35; 71.4%) compared to the adjacent normal tissues. We also showed that RMRP expression was upregulated in lung adenocarcinoma cell lines (A549, SPC-A1, H1299 and H23) compared to the bronchial epithelial cell line (16HBE). Ectopic expression of RMRP promoted lung adenocarcinoma cell proliferation, colony formation and invasion. In addition, overexpression of RMRP inhibited the miR-206 expression in the H1299 cell and increased the KRAS, FMNL2 and SOX9 expression, which were the target genes of miR-206. Re-expression of miR-206 reversed the RMRP-induced the H1299 cell proliferation and migration. Our data proved that RMRP acted as an oncogene LncRNA to promote the expression of KRAS, FMNL2 and SOX9 by inhibiting miR-206 expression in lung cancer. These data suggested that RMRP might serve as a therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Qingjun Meng
- Department of thoracic surgery, CangZhou central hospital, CangZhou, Hebei, China
| | - Mingming Ren
- Department of thoracic surgery, CangZhou central hospital, CangZhou, Hebei, China
| | - Yanguang Li
- Department of thoracic surgery, CangZhou central hospital, CangZhou, Hebei, China
| | - Xiang Song
- Department of thoracic surgery, CangZhou central hospital, CangZhou, Hebei, China
| |
Collapse
|
15
|
The roles of RNA processing in translating genotype to phenotype. NATURE REVIEWS. MOLECULAR CELL BIOLOGY 2016. [PMID: 27847391 DOI: 10.1038/nrm.2016.139.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A goal of human genetics studies is to determine the mechanisms by which genetic variation produces phenotypic differences that affect human health. Efforts in this respect have previously focused on genetic variants that affect mRNA levels by altering epigenetic and transcriptional regulation. Recent studies show that genetic variants that affect RNA processing are at least equally as common as, and are largely independent from, those variants that affect transcription. We highlight the impact of genetic variation on pre-mRNA splicing and polyadenylation, and on the stability, translation and structure of mRNAs as mechanisms that produce phenotypic traits. These results emphasize the importance of including RNA processing signals in analyses to identify functional variants.
Collapse
|
16
|
Manning KS, Cooper TA. The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol 2016; 18:102-114. [PMID: 27847391 DOI: 10.1038/nrm.2016.139] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A goal of human genetics studies is to determine the mechanisms by which genetic variation produces phenotypic differences that affect human health. Efforts in this respect have previously focused on genetic variants that affect mRNA levels by altering epigenetic and transcriptional regulation. Recent studies show that genetic variants that affect RNA processing are at least equally as common as, and are largely independent from, those variants that affect transcription. We highlight the impact of genetic variation on pre-mRNA splicing and polyadenylation, and on the stability, translation and structure of mRNAs as mechanisms that produce phenotypic traits. These results emphasize the importance of including RNA processing signals in analyses to identify functional variants.
Collapse
Affiliation(s)
- Kassie S Manning
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Nariman-Saleh-Fam Z, Bastami M, Somi MH, Samadi N, Abbaszadegan MR, Behjati F, Ghaedi H, Tavakkoly-Bazzaz J, Masotti A. In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer. Cell Biochem Biophys 2016; 74:483-497. [PMID: 27518186 DOI: 10.1007/s12013-016-0754-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
Esophageal cancer is the eighth most common cancer worldwide. Also middle-aged obese adults with higher body mass index during childhood have a greater risk to develop esophageal cancer. The contribution of microRNAs to esophageal cancer has been extensively studied and it became clear that these noncoding RNAs may play crucial roles in pathogenesis, diagnosis and prognosis of the disease. Increasing evidences have suggested that polymorphisms perturbing microRNA targetome (i.e., the compendium of all microRNA target sites) are associated with cancers including esophageal cancer. However, the extent to which such variants contribute to esophageal cancer is still unclear. In this study, we applied an in silico approach to systematically identify polymorphisms perturbing microRNA targetome in esophageal cancer and performed various analyses to predict the functional consequences of the occurrence of these variants. The computational results were integrated to provide a prioritized list of the most potentially disrupting esophageal cancer-implicated microRNA targetome polymorphisms along with the in silico insight into the mechanisms with which such variations may modulate microRNA-mediated regulation. The results of this study will be valuable for future functional experiments aimed at dissecting the roles of microRNA targetome polymorphisms in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Ziba Nariman-Saleh-Fam
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, Viale di San Paolo 15, Rome, 00146, Italy.
| |
Collapse
|
18
|
Zhou Q, Jiang Y, Yin W, Wang Y, Lu J. Single-nucleotide polymorphism in microRNA-binding site of SULF1 target gene as a protective factor against the susceptibility to breast cancer: a case-control study. Onco Targets Ther 2016; 9:2749-57. [PMID: 27274271 PMCID: PMC4869662 DOI: 10.2147/ott.s102433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Numerous clinical studies have suggested that chemopreventive drugs for breast cancer such as tamoxifen and exemestane can effectively reduce the incidence of estrogen receptor (ER)-positive breast cancer. However, it remains unclear how to identify those who are susceptible to ER-positive breast cancer. Accordingly, there is a great demand for a probe into the predisposing factors so as to provide precise chemoprevention. Recent evidence has indicated that ERα expression can be regulated by microRNAs (miRNAs), such as miR-206, in breast cancer. We assumed that single-nucleotide polymorphisms (SNPs) in the miR-206-binding sites of the target genes may be associated with breast cancer susceptibility with different ER statuses. Methods We genotyped the SNPs that reside in and around the miR-206-binding sites of two target genes – heparan sulfatase 1 (SULF1) and RPTOR-independent companion of mammalian target of rapamycin Complex 2 (RICTOR) – which were related to the progression or metastasis of breast cancer cells in 710 breast cancer patients and 294 controls by the matrix-assisted laser desorption ionization-time of flight mass spectrometry method. Modified odds ratios (ORs) with their 95% confidence intervals (CIs) were calculated by a multivariate logistic regression analysis to evaluate the potential association between the SNPs and breast cancer susceptibility. Results For rs3802278, which is located in the 3′-untranslated region (3′-UTR) of SULF1, the frequency of the AA genotype was less in breast cancer patients than that in the controls as compared to that of the GG + GA genotype not only for ER-positive breast cancer patients (adjusted OR =0.663, P=0.032) but also for hormone receptor-positive breast cancer patients (adjusted OR =0.610, P=0.018). Besides, the frequency of the AA genotype was less than that of the GG genotype between the ER-positive breast cancer patients and the controls (adjusted OR =0.791, P=0.038). For rs66916453, which is located in the 3′-UTR of RICTOR, no significant difference was observed between the case and the control group for the genotypes or alleles (P>0.05). Conclusion The SNPs in the miRNA-binding sites within the 3′-UTR of SULF1 may serve as protective factors against the susceptibility to breast cancer, especially to ER-positive breast cancer in the Chinese population. These SNPs are promising candidate biomarkers to predict the susceptibility of breast cancer and guide the administration of targeted preventive endocrine therapy.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China; Department of Gynecology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Yiwei Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China; Breast Cancer Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wenjin Yin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yaohui Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China; Breast Cancer Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jinsong Lu
- Breast Cancer Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Mao F, Xiao L, Li X, Liang J, Teng H, Cai W, Sun ZS. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res 2016; 44:D154-63. [PMID: 26635394 PMCID: PMC4702914 DOI: 10.1093/nar/gkv1308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure. It has been revealed that single nucleotide variants (SNVs) that alter RNA structure, also known as RiboSNitches, exhibit 3-fold greater local structure changes than replicates of the same DNA sequence, demonstrated by the fact that depletion of RiboSNitches could result in the alteration of specific RNA shapes at thousands of sites, including 3' UTRs, binding sites of microRNAs and RBPs. However, the network between SNVs and post-transcriptional regulation remains unclear. Here, we developed RBP-Var, a database freely available at http://www.rbp-var.biols.ac.cn/, which provides annotation of functional variants involved in post-transcriptional interaction and regulation. RBP-Var provides an easy-to-use web interface that allows users to rapidly find whether SNVs of interest can transform the secondary structure of RNA and identify RBPs whose binding may be subsequently disrupted. RBP-Var integrates DNA and RNA biology to understand how various genetic variants and post-transcriptional mechanisms cooperate to orchestrate gene expression. In summary, RBP-Var is useful in selecting candidate SNVs for further functional studies and exploring causal SNVs underlying human diseases.
Collapse
Affiliation(s)
- Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luoyuan Xiao
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xianfeng Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
20
|
Xie B, Zhang C, Kang K, Jiang S. miR-599 Inhibits Vascular Smooth Muscle Cells Proliferation and Migration by Targeting TGFB2. PLoS One 2015; 10:e0141512. [PMID: 26551255 PMCID: PMC4638351 DOI: 10.1371/journal.pone.0141512] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of cardiovascular diseases including coronary heart disease, restenosis and atherosclerosis. MicroRNAs are a class of small, non-coding and endogenous RNAs that play critical roles in VSMCs function. In this study, we showed that PDGF-bb, as a stimulant, promoted VSMCs proliferation and suppressed the expression of miR-599. Moreover, overexpression of miR-599 inhibited VSMCs proliferation and also suppressed the PCNA and ki-67 expression. In addition, we demonstrated that ectopic expression of miR-599 repressed the VSMCs migration. We also showed that miR-599 inhibited type I collagen, type V collagen and proteoglycan expression. Furthermore, we identified TGFb2 as a direct target gene of miR-599 in VSMCs. Overexpression of TGFb2 reversed miR-599-induced inhibition of VSMCs proliferation and type I collagen, type V collagen and proteoglycan expression. In conclusion, our findings suggest miR-599 plays a crucial role in controlling VSMCs proliferation and matrix gene expression by regulating TGFb2 expression.
Collapse
Affiliation(s)
- Baodong Xie
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunfeng Zhang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Kang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shulin Jiang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
21
|
Shameer K, Tripathi LP, Kalari KR, Dudley JT, Sowdhamini R. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment. Brief Bioinform 2015; 17:841-62. [PMID: 26494363 DOI: 10.1093/bib/bbv084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 12/20/2022] Open
Abstract
Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records.
Collapse
|
22
|
Ma J, Lin Y, Zhan M, Mann DL, Stass SA, Jiang F. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. J Transl Med 2015; 95:1197-206. [PMID: 26146958 PMCID: PMC4586315 DOI: 10.1038/labinvest.2015.88] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
Tremendous efforts have been made to develop cancer biomarkers by detecting circulating extracellular miRNAs directly released from tumors. Yet, none of the cell-free biomarkers has been accepted to be used for early detection of non-small cell lung cancer (NSCLC). Peripheral blood mononucleated cells (PBMCs) act as the first line of defense against malignancy in immune system, their dysfunction may occur as an early event in cancer immunogenicity or immune evasion. We proposed to investigate whether analysis of miRNA expressions of PBMCs has diagnostic value for NSCLC. We first used a microarray to analyze PBMCs of 16 stage I NSCLC patients and 16 cancer-free smokers, and identified seven PBMC miRNAs with a significantly altered expression level in NSCLC patients. In a training set of 84 NSCLC patients and 69 cancer-free smokers, a panel of two miRNAs (miRs-19b-3p and -29b-3p) were developed from the seven PBMC miRNAs, producing 72.62% sensitivity and 82.61% specificity in identifying NSCLC. Furthermore, the miRNAs could identify squamous cell lung carcinoma (SCC), a major type of NSCLC, with 80.00% sensitivity and 89.86% specificity. The expression levels of the miRNAs were independent of disease stage. In a testing set of 56 NSCLC patients and 46 controls, the performance of the biomarkers was reproducibly confirmed. The study presents the first in-depth analysis of PBMC miRNA profile of NSCLC patients. The assessment of PBMC miRNAs may provide a new diagnostic approach for the early detection of NSCLC.
Collapse
Affiliation(s)
- Jie Ma
- Department of Clinical Biochemistry, Jiangsu University School of Medicine, Xuefu Road 301, Zhenjiang, Jiangsu Province, 212013, China,Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA
| | - Yanli Lin
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA
| | - Min Zhan
- Departments of Epidemiology & Public Health, University of Maryland School of Medicine, 660 W. Redwood St. Baltimore, MD 21201, USA
| | - Dean L. Mann
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA
| | - Sanford A Stass
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA
| | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA,Correspondence to Feng Jiang, Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th floor, Baltimore, MD 21201-1192, USA.
| |
Collapse
|
23
|
Ye L, Wang H, Liu B. miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol 2015; 37:1151-7. [PMID: 26277787 DOI: 10.1007/s13277-015-3835-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that, when dysregulated, are involved in the initiation and progression of various cancers, including lung cancer, in humans. In the current study, qRT-PCR was performed to measure miR-211 expression in human non-small cell lung cancer (NSCLC) cell lines and tissues. Cell proliferation, cell cycle, colony formation, and invasion were performed to detect the functional role of miR-211 in human NSCLC cell line. We used luciferase reporter assay to find the potential target of miR-211. We found that miR-211 expression was upregulated in human non-small cell lung cancer (NSCLC) cell lines and tissues. The overexpression of miR-211 enhanced NSCLC cell proliferation, colony formation, and invasion. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target of miR-211. SRCIN1 silencing promoted cell proliferation, and SRCIN1 expression was downregulated in human NSCLC cell lines. Thus, miR-211 may function as an oncogenic miRNA in NSCLC, partly by regulating SRCIN1, and the modulation of miR-211 expression represents a potential strategy for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Hui Wang
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Baogang Liu
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040.
| |
Collapse
|
24
|
MicroRNA-410 promotes cell proliferation by targeting BRD7 in non-small cell lung cancer. FEBS Lett 2015; 589:2218-23. [PMID: 26149213 DOI: 10.1016/j.febslet.2015.06.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/10/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
miR-410 acts as an oncogene or tumor suppressor gene in some malignancies. However, its role in NSCLC is still unknown. In this study, we showed that the expression of miR-410 was up-regulated in both human NSCLC tissues and cells. Overexpression of miR-410 promoted cell proliferation, migration, and invasion of NSCLC. In addition, bromodomain-containing protein 7 (BRD7) was a direct target of miR-410. MiR-410-mediated downregulation of BRD7 led to increase Akt phosphorylation. Inhibition of Akt phosphorylation can rescue the effect of miR-410 on NSCLC cell. The expression of BRD7 was downregulated in NSCLC and was inversely expressed with miR-410 in NSCLC. Our data provided new knowledge regarding the role of miR-410 in the lung cancer progression.
Collapse
|
25
|
Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA, Burt DW. Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 2015; 22:205-17. [PMID: 25926514 PMCID: PMC4463845 DOI: 10.1093/dnares/dsv005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
Next-generation sequencing has prompted a surge of discovery of millions of genetic variants from vertebrate genomes. Besides applications in genetic association and linkage studies, a fraction of these variants will have functional consequences. This study describes detection and characterization of 15 million SNPs from chicken genome with the goal to predict variants with potential functional implications (pfVars) from both coding and non-coding regions. The study reports: 183K amino acid-altering SNPs of which 48% predicted as evolutionary intolerant, 13K splicing variants, 51K likely to alter RNA secondary structures, 500K within most conserved elements and 3K from non-coding RNAs. Regions of local fixation within commercial broiler and layer lines were investigated as potential selective sweeps using genome-wide SNP data. Relationships with phenotypes, if any, of the pfVars were explored by overlaying the sweep regions with known QTLs. Based on this, the candidate genes and/or causal mutations for a number of important traits are discussed. Although the fixed variants within sweep regions were enriched with non-coding SNPs, some non-synonymous-intolerant mutations reached fixation, suggesting their possible adaptive advantage. The results presented in this study are expected to have important implications for future genomic research to identify candidate causal mutations and in poultry breeding.
Collapse
Affiliation(s)
- Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Clarissa Boschiero
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hannah Ralph
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
26
|
Cheng DL, Xiang YY, Ji LJ, Lu XJ. Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumour Biol 2015; 36:479-88. [PMID: 25604144 DOI: 10.1007/s13277-015-3093-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) refer to RNA transcripts, such as mRNAs, non-coding RNAs, pseudogene transcripts, and circular RNAs, that can regulate each other by competing for the same pool of miRNAs. ceRNAs involve in the pathogenesis of several common cancers such as prostate cancer, liver cancer, breast cancer, lung cancer, gastric cancer, endometrial cancer, and so on. ceRNA activity is determined by factors such as miRNA/ceRNA abundance, ceRNAs binding affinity to miRNAs, RNA editing, and RNA-binding proteins. The alteration of any of these factors may lead to ceRNA network imbalance and thus contribute to cancer initiation and progression. There are generally three steps in ceRNA research conductions: ceRNA prediction, ceRNA validation, and ceRNA functional investigation. Deciphering ceRNA interplay in cancer provides new insight into cancer pathogenesis and opportunities for therapy exploration. In this review, we try to give readers a concise and reliable illustration on the mechanism, functions, research approaches, and perspective of ceRNA in cancer.
Collapse
Affiliation(s)
- Dong-Liang Cheng
- Department of Cardiothoracic Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | | | | | | |
Collapse
|
27
|
Kim M, Slack FJ. MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol 2014; 7:84. [PMID: 25433809 PMCID: PMC4263212 DOI: 10.1186/s13045-014-0084-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 02/08/2023] Open
Abstract
While microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, little is known about the role of miRNAs in the regulation of KRAS in cancer. Here we review a selection of studies published in 2014 that have contributed to our understanding of the molecular mechanisms of KRAS regulation by miRNAs and the clinical relevance of sequence variants that may interfere with functional miRNA-mediated KRAS regulation.
Collapse
Affiliation(s)
- Minlee Kim
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT, 06511, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
28
|
The potential of microRNAs in personalized medicine against cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642916. [PMID: 25243170 PMCID: PMC4163464 DOI: 10.1155/2014/642916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs orchestrate the expression of the genome and impact many, if not all, cellular processes. Their deregulation is thus often causative of human malignancies, including cancers. Numerous studies have implicated microRNAs in the different steps of tumorigenesis including initiation, progression, metastasis, and resistance to chemo/radiotherapies. Thus, microRNAs constitute appealing targets for novel anticancer therapeutic strategies aimed at restoring their expression or function. As microRNAs are present in a variety of human cancer types, microRNA profiles can be used as tumor-specific signatures to detect various cancers (diagnosis), to predict their outcome (prognosis), and to monitor their treatment (theranosis). In this review, we present the different aspects of microRNA biology that make them remarkable molecules in the emerging field of personalized medicine against cancers and provide several examples of their industrial exploitation.
Collapse
|