1
|
Shu Y, Dong Y, Li B, Wang Y, Liao Q, Su Z, Wang J, Zuo P, Yuan H, Wang C, Li S, Fan Y, Su X. Knockdown of STK39 inhibits lung cancer brain metastasis by suppressing the CPSF4/NFκB/COX2 pathway. J Neurooncol 2025:10.1007/s11060-025-05072-3. [PMID: 40399619 DOI: 10.1007/s11060-025-05072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Lung cancer is the most common cancer worldwide, and approximately 30% of lung cancer patients will develop brain metastases. Serine/threonine kinase 39 (STK39) plays a significant role in various malignancies. However, the role and mechanism of STK39 in lung cancer brain metastasis have not been reported. METHODS The expression levels of STK39 in lung cancer cells were detected using quantitative reverse transcription PCR (RT-qPCR) and Western blotting. STK39 expression was knocked down in lung cancer cell lines PC9 and H1299 using RNA interference. Cell proliferation, apoptosis, cell cycle, migration, and invasion abilities were assessed using the CCK-8 assay, colony formation assay, flow cytometry, and Transwell chamber assay, respectively. Phosphoproteomics analysis was performed to identify phosphorylated target proteins of STK39 and associated signaling pathways. PC9 and H1299 cells with knocked-down STK39 were injected into nude mice via the common carotid artery to observe the formation of brain metastases. Finally, RT-qPCR and Western blotting were used to detect the expression of STK39, CPSF4/NFκB/COX2, and epithelial-mesenchymal transition (EMT) markers in lung cancer and brain metastasis tissues, and to analyze the correlation between STK39 expression and the size of metastatic tumors. RESULTS STK39 was highly expressed in lung cancer cell lines PC9 and H1299. Knockdown of STK39 inhibited proliferation, migration, and invasion of lung cancer cells, induced apoptosis, and caused cell cycle arrest. Phosphoproteomics and Phos-tag analyses showed that knockdown of STK39 significantly downregulated the expression of phosphorylated CPSF4 protein in PC9 and H1299 cells, along with significant downregulation of NFκB, COX2, and EMT markers. Knockdown of STK39 inhibited the formation of brain metastases by PC9 and H1299 cells in nude mice. Lung cancer brain metastasis tissues exhibited high expression of STK39, CPSF4, NFκB, and COX2, with their expression levels showing a significant positive correlation with the size of metastatic tumors. CONCLUSION STK39 is highly expressed in lung cancer brain metastasis tissues, and knockdown of STK39 significantly inhibits brain metastasis in experimental models, accompanied by the suppression of the CPSF4/NFκB/COX2 signaling pathway and EMT process. Therefore, STK39 may be a key factor promoting lung cancer brain metastasis and a potential therapeutic target.
Collapse
Affiliation(s)
- Yue Shu
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Yunzhu Dong
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Bo Li
- Orthopedics Department, Yongchuan District People's Hospital of Chongqing City, Chongqing, 402160, China
| | - Yutong Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Quanyang Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ziqin Su
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Jun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Pin Zuo
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Hongpin Yuan
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Chun Wang
- Department of PET-CT/MR Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shujuan Li
- Department of PET-CT/MR Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yaodong Fan
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China.
| | - Xiaosan Su
- Scientific Research and Experimental Center, Yunnan University of Chinese Medicine, No.295 Th Yuhua Road, Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
2
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
3
|
Liu L, Manley JL. Modulation of diverse biological processes by CPSF, the master regulator of mRNA 3' ends. RNA (NEW YORK, N.Y.) 2024; 30:1122-1140. [PMID: 38986572 PMCID: PMC11331416 DOI: 10.1261/rna.080108.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The cleavage and polyadenylation specificity factor (CPSF) complex plays a central role in the formation of mRNA 3' ends, being responsible for the recognition of the poly(A) signal sequence, the endonucleolytic cleavage step, and recruitment of poly(A) polymerase. CPSF has been extensively studied for over three decades, and its functions and those of its individual subunits are becoming increasingly well-defined, with much current research focusing on the impact of these proteins on the normal functioning or disease/stress states of cells. In this review, we provide an overview of the general functions of CPSF and its subunits, followed by a discussion of how they exert their functions in a surprisingly diverse variety of biological processes and cellular conditions. These include transcription termination, small RNA processing, and R-loop prevention/resolution, as well as more generally cancer, differentiation/development, and infection/immunity.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
4
|
Pagani G, Gandellini P. Cleavage and polyadenylation machinery as a novel targetable vulnerability for human cancer. Cancer Gene Ther 2024; 31:957-960. [PMID: 38632357 DOI: 10.1038/s41417-024-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The role of alternative polyadenylation of mRNA in sustaining aggressive features of tumors is quite well established, as it is responsible for the 3'UTR shortening of oncogenes and subsequent relief from miRNA-mediated repression observed in cancer cells. However, the information regarding the vulnerability of cancer cells to the inhibition of cleavage and polyadenylation (CPA) machinery is very scattered. Only few recent reports show the antitumor activity of pharmacological inhibitors of CPSF3, one among CPA factors. More in general, the fact that deregulated CPA can be seen as a new hallmark of cancer and as a potential reservoir of novel therapeutic targets has never been formalized. Here, to extend our view on the potential of CPA inhibition (CPAi) approaches as anticancer therapies, we systematically tested the fitness of about one thousand cell lines of different cancer types upon depletion of all known CPA factors by interrogating genome-scale CRISPR and RNAi dependency maps of the DepMap project. Our analysis confirmed core and accessory CPA factors as novel vulnerabilities for human cancer, thus highlighting the potential of CPAi as anticancer therapy. Among all, CPSF1 appeared as a promising actionable candidate for drug development, as it showed low dependency scores pancancer and particularly in highly proliferating cells. In a personalized medicine perspective, the observed differential vulnerability of cancer cell lines to selected CPA factors may be used to build up signatures to predict response of individual human tumors to CPAi approaches.
Collapse
Affiliation(s)
- Giulia Pagani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
5
|
Wang Y, Geng H, Li X, Chen P, Xu S, Zhang S, Weng P, Guo J, Huang M, Wu Y, Chen Y. A novel nomogram for predicting overall survival in peripheral T cell lymphoma patients.. [DOI: 10.21203/rs.3.rs-2823604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Abstract
Background The prognosis of peripheral T cell lymphomas (PTCLs) varies greatly. This study aimed at generating a prognostic nomogram based on differentially expressed genes (DEGs).Methods Firstly, we collected RNA transcripts from Gene Expression Omnibus and identified DEGs. Secondly we used univariate Cox regression, Least absolute shrinkage and selection operator (LASSO) to screen the independent risk factors to construct nomogram in the training cohort. Thirdly, we evaluate its prediction accuracy via decision curves analysis (DCA), receiver operating characteristic (ROC) and calibration rate to confirm its performance on survival in training and validation cohort. Then we carried out subgroup analysis in training and validation to eliminate the effects of age, gender, and pathological subtype. Lastly, to verify feasibility of nomogram in practice, we applied immunohistochemistry to clinical samples and analyzed the relationship between IHC scores and prognosis.Results The 702 DEGs between 40 PTCLs and 20 non-tumor patients were identified. Then ANGPTL2, CPSF4, CLIC4 and OTUD6B were screened out as independent risk factors via univariate Cox regression and LASSO. The DCA, ROC, Harrell’s concordance index (c-index) and calibration rate showed nomogram predicting more accurately than any single specific transcript. The results showed PTCLs with higher nomogram-score had a longer survival, regardless of age, gender and pathological subtype. Finally, the high expression level of ANGPTL2, CPSF4 and OTUD6B related to poor prognosis. Higher expression of CLIC4 related to longer survival.Conclusion This nomogram showed the favorable clinical applicability, regardless of age, gender and pathological subtype.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Hai-Li Geng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Juan Xu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Ping Weng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Jiang-Rui Guo
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Mei-Juan Huang
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yong Wu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| | - Yuan-Zhong Chen
- Fujian Institute of Hematology, Fujian Medical University Union Hospital
| |
Collapse
|
6
|
Song Y, Sun K, Gong L, Shi L, Qin T, Wang S, Deng W, Chen W, Zheng F, Li G. CPSF4 promotes tumor-initiating phenotype by enhancing VEGF/NRP2/TAZ signaling in lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:62. [PMID: 36567417 DOI: 10.1007/s12032-022-01919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Lung cancer is the leading cause of malignant tumor-related deaths worldwide. The presence of tumor-initiating cells in lung cancer leads to tumor recurrence, metastasis, and resistance to conventional treatment. Cleavage and polyadenylation specificity factor 4 (CPSF4) activation in tumor cells contributes to the poor prognosis of lung cancer. However, the precise biological functions and molecular mechanisms of CPSF4 in the regulation of tumor-initiating cells remain unclear. We demonstrated that CPSF4 promotes tumor-initiating phenotype and confers chemoresistance to paclitaxel both in vitro and in vivo. Mechanistically, we showed that CPSF4 binds to the promoters of vascular endothelial growth factor (VEGF) and neuropilin-2 (NRP2) and activated their transcription. In addition, we showed that CPSF4/VEGF/NRP2-mediated tumor-initiating phenotype and chemoresistance through TAZ induction. Furthermore, analysis of clinical data revealed that lung cancer patients with high CPSF4 expression exhibit high expression levels of VEGF, NRP2, and TAZ and that expression of these proteins are positively correlated with poor prognosis. Importantly, selective inhibition of VEGF, NRP2, or TAZ markedly suppressed CPSF4-mediated tumor-initiating phenotype and chemoresistance. Our findings reveal the mechanism of CPSF4 modulating tumor-initiating phenotype and chemoresistance in lung cancer and indicate that the CPSF4-VEGF-NRP2-TAZ signaling pathway may be a prognosis marker and therapeutic target in lung cancer.
Collapse
Affiliation(s)
- YingQiu Song
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - LiLan Gong
- Department of Ultrasound, Wuhan No.1 Hospital, Wuhan, China
| | - LinLi Shi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - ShuSen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - WuGuo Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - WangBing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - FeiMeng Zheng
- Department of Medical Oncology, The Eastern Hospital, The First Affiliated Hospital, Sun Yat-Sen University, No.58, Zhong Shan Er Lu, Guangzhou, 510080, China.
| | - GuiLing Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
An W, Yu F. Silencing of CPSF7 inhibits the proliferation, migration, and invasion of lung adenocarcinoma cells by blocking the AKT/mTOR signaling pathway. Open Med (Wars) 2022; 17:1655-1663. [PMID: 36349192 PMCID: PMC9587529 DOI: 10.1515/med-2022-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cleavage and polyadenylation specific factor 7 (CPSF7) is an important participator in the cleavage and polyadenylation of pre-mRNAs. This study aims to uncover the function and underlying mechanism of CPSF7 in lung adenocarcinoma (LUAD). CPSF7 expression in LUAD cells was measured using real time-quantitative polymerase chain reaction and Western blotting. Our results showed that CPSF7 expression was upregulated in LUAD cell lines (A549, H1299, and HCC827). To explore the function of CPSF7 on LUAD, CPSF7 was silenced by the si-CPSF7 transfection and overexpressed by the oe-CPSF7 transfection in A549 cells. Cell proliferation was measured using cell counting kit-8 and colony formation assays. Cell migration and invasion were measured by wound healing and Transwell assays, respectively. Our data revealed that CPSF7 silencing inhibited the viability, colony formation, migration, and invasion of LUAD cells. On the contrary, CPSF7 overexpression enhanced the malignant characteristics of LUAD cells. Additionally, expression of AKT/mTOR pathway-related proteins was detected using Western blotting. CPSF7 silencing blocked the AKT/mTOR signaling pathway. The intervention of SC79 (an activator of the AKT/mTOR pathway) weakened the antitumor effects of CPSF7 silencing in LUAD cells. Silencing of CPSF7 inhibits the malignant characteristics of LUAD cells by blocking the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Weishao An
- Department of Respiratory, Xiaoshan First People’s Hospital, Hangzhou, 311200, China
| | - Fang Yu
- Department of Respiratory, Xiaoshan First People’s Hospital, No. 199 Shixin South Road, Hangzhou, 311200, China
| |
Collapse
|
8
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Li N, Jiang S, Fu R, Lv J, Yao J, Mai J, Hua X, Chen H, Liu J, Lu M. Cleavage and polyadenylation-specific factor 3 induces cell cycle arrest via PI3K/Akt/GSK-3β signaling pathways and predicts a negative prognosis in hepatocellular carcinoma. Biomark Med 2021; 15:347-358. [PMID: 33666519 DOI: 10.2217/bmm-2021-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Recent studies have shown that cleavage and polyadenylation-specific factor 3 (CPSF3) is a promising antitumor therapeutic target, but its potential role in hepatocellular carcinoma (HCC) has not been reported. Materials & methods: We explored the expression pattern of CPSF3 in HCC through bioinformatics analysis, quantitative polymerase chain reaction (qPCR) and western blot. The potential role of CPSF3 as a biomarker for HCC was evaluated by Kaplan-Meier analysis. Next, changes in HCC cell lines in the CPSF3 knockdown model group and the control group were assessed by Cell Counting Kit-8, clonal formation, flow cytometry and EdU staining. Western blot detected changes in protein levels of the PI3K/Akt/GSK-3β axis of two HCC cell lines in the knockdown group and the control group. Results: The results showed that the transcription and protein levels of CPSF3 were significantly higher in HCC tissues than in adjacent normal tissues (p < 0.05). The HCC cohort with increased expression of CPSF3 is associated with advanced stage and differentiation and predicts poorer prognosis (p < 0.05). CPSF3 knockdown significantly inhibited proliferation and clone formation of HepG2 and SMMC-7721 cell lines. Flow cytometry analysis showed G1-S cell cycle arrest in the CPSF3 knockdown group, and the results of EdU staining were consistent with this. Compared with the control group, p-Akt and cyclin D1 were decreased, and GSK-3β was increased in the knockdown group. Conclusion: CPSF3 may be a potential diagnostic biomarker and candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Ning Li
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Shaotao Jiang
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Rongdang Fu
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Jin Lv
- Department of Pathology, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, 528000, China
| | - Jiyou Yao
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jialuo Mai
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xuefeng Hua
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Huan Chen
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jie Liu
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Minqiang Lu
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| |
Collapse
|
10
|
Epidermal progenitors suppress GRHL3-mediated differentiation through intronic polyadenylation promoted by CPSF-HNRNPA3 collaboration. Nat Commun 2021; 12:448. [PMID: 33469008 PMCID: PMC7815847 DOI: 10.1038/s41467-020-20674-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
In self-renewing somatic tissue such as skin epidermis, terminal differentiation genes must be suppressed in progenitors to sustain regenerative capacity. Here we show that hundreds of intronic polyadenylation (IpA) sites are differentially used during keratinocyte differentiation, which is accompanied by downregulation of the Cleavage and Polyadenylation Specificity Factor (CPSF) complex. Sustained CPSF expression in undifferentiated keratinocytes requires the contribution from the transcription factor MYC. In keratinocytes cultured in undifferentiation condition, CSPF knockdown induces premature differentiation and partially affects dynamically used IpA sites. These sites include an IpA site located in the first intron of the differentiation activator GRHL3. CRISPR knockout of GRHL3 IpA increased full-length GRHL3 mRNA expression. Using a targeted genetic screen, we identify that HNRNPA3 interacts with CPSF and enhances GRHL3 IpA. Our data suggest a model where the interaction between CPSF and RNA-binding proteins, such as HNRNPA3, promotes site-specific IpA and suppresses premature differentiation in progenitors.
Collapse
|
11
|
Zhang M, Lin H, Ge X, Xu Y. Overproduced CPSF4 Promotes Cell Proliferation and Invasion via PI3K-AKT Signaling Pathway in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2021; 79:1177.e1-1177.e14. [PMID: 33535057 DOI: 10.1016/j.joms.2020.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Invasion and metastasis are major challenges in the treatment of oral cancer. We hypothesize that cleavage and polyadenylation specific factor 4 (CPSF4), a key mediator of cell growth and metastasis in several types of cancers, contributes to oral squamous cell carcinoma (OSCC) pathogenesis. MATERIALS AND METHODS The expression and production of CPSF4 in OSCC cell lines and tumor tissues were assessed by RT-PCR and western blot, respectively. The relationships between CPSF4 production and OSCC clinicopathological features were analyzed using immunohistochemistry. The effects of CPSF4 on viability, proliferation, migration, invasion, cell cycle distribution, and apoptosis of OSCC cells were measured by MTS assay, colony formation assay, wound-healing, transwell invasion assay, flow cytometry, and cell apoptosis assay, respectively. Western blot analysis was used to assess alteration of PI3K-AKT pathway member levels in cell lines transfected with CPSF4 siRNA. Mice xenograft models were used to determine the effect of CPSF4 on OSCC tumor growth in vivo. RESULTS CPSF4 was highly expressed in OSCC cell lines and tumor tissues compared with adjacent normal oral tissues. High CPSF4 expression was strongly correlated with vascular invasion (P = .004), distant metastasis (P = .001), and TNM stages (P = .001). Moreover, reduction of CPSF4 levels contributed to the inhibition of cell viability, proliferation, invasion and migration, and the induction of apoptosis in OSCC cell lines. Reduction of CPSF4 levels results in OSCC cell cycle arrest in G1 phase by targeting c-Myc. CPSF4 contributed to proliferation inhibition via PI3K-AKT signaling pathway. Reduction of CPSF4 levels inhibits OSCC tumor growth in vivo. CONCLUSIONS Our results suggest that CPSF4 supports OSCC invasion and metastasis and may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Mingjie Zhang
- Resident, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Han Lin
- Resident, Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaohan Ge
- Graduate Student, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yue Xu
- Professor, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
12
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
13
|
Wu J, Miao J, Ding Y, Zhang Y, Huang X, Zhou X, Tang R. MiR-4458 inhibits breast cancer cell growth, migration, and invasiveness by targeting CPSF4. Biochem Cell Biol 2019; 97:722-730. [PMID: 30970220 DOI: 10.1139/bcb-2019-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have reported that CPSF4 is over-expressed in a large percentage of human lung cancers, and CPSF4 has been identified as a potential oncogene of human lung tumor. Downregulation of CPSF4 inhibits the proliferation and promotes the apoptosis of lung adenocarcinoma cells. A previous study by our group also found overexpression of CPSF4 in breast cancer (BC), and was closely associated with a poor prognosis for the patient. This study investigates microRNAs (miRNAs) that target CPSF4 to modulate BC cell proliferation. We found that miR-4458 was noticeably reduced in BC tissues and cells. Using a miR-4458 mimic, we found that cell proliferation, migration, and invasiveness were suppressed by miR-4458 overexpression, and were enhanced by reducing the expression of miR-4458. Moreover, the results from bioinformatics analyses suggest a putative target site in the CPSF4 3'-UTR. Furthermore, using luciferase reporter assays and Western blotting, we verified that miR-4458 directly targets the 3'-UTR of CPSF4 and downregulates COX-2 and h-TERT, which are downstream target genes of CPSF4. Additionally, PI3K/AKT and ERK were shown to be inhibited by miR-4458 overexpression in BC cells. Moreover, miR-4458 suppresses BC cell growth in vivo. Consequently, these results suggest that the miR-4458-CPSF4-COX-2-hTERT axis might serve as a potential target for the treatment of BC patients.
Collapse
Affiliation(s)
- Jianrong Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China
| | - Juan Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Ding
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yayun Zhang
- Institute of Cancer Stem Cell & First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaohao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Zhou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ranran Tang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
14
|
Pan L, Tang Z, Pan L, Tang R. MicroRNA-3666 inhibits lung cancer cell proliferation, migration, and invasiveness by targeting BPTF. Biochem Cell Biol 2019; 97:415-422. [PMID: 30481052 DOI: 10.1139/bcb-2018-0301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A previous study by our group indicted that overexpression of bromodomain PHD-finger transcription factor (BPTF) occurs in lung adenocarcinoma, and is closely associated with advanced clinical stage, higher numbers of metastatic lymph nodes, the occurrence of distant metastasis, low histological grade, and poor prognosis. Down-regulation of BPTF inhibited lung adenocarcinoma cell proliferation and promoted lung adenocarcinoma cell apoptosis. The purpose of this study is to identify valuable microRNAs (miRNAs) that target BPTF to modulate lung adenocarcinoma cell proliferation. In our results, we found that miR-3666 was notably reduced in lung adenocarcinoma tissues and cell lines. Using an miR-3666 mimic, we discovered that cell proliferation, migration, and invasiveness were suppressed by miR-3666 overexpression, but these were all enhanced when the expression of miR-3666 was reduced. Moreover, bioinformatics analysis using the TargetScan database and miRanda software suggested a putative target site in BPTF 3′-UTR. Furthermore, using a luciferase reporter assay, we verified that miR-3666 directly targets the 3′-UTR of BPTF. Using Western blot we discovered that overexpression of miR-3666 negatively regulates the protein expression of BPTF. Finally, we identified that the PI3K–AKT and epilthelial–mesenchymal transition (EMT) signaling pathways were inhibited by miR-3666 overexpression in lung cancer cells. In conclusion, our data indicate that miR-3666 could play an essential role in cell proliferation, migration, and invasiveness by targeting BPTF and partly inhibiting the PI3K–AKT and EMT signaling pathways in human lung cancers.
Collapse
Affiliation(s)
- Linqing Pan
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
- Reproductive Medical Center, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Zhipeng Tang
- The First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lina Pan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ranran Tang
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
15
|
Ning Y, Liu W, Guan X, Xie X, Zhang Y. CPSF3 is a promising prognostic biomarker and predicts recurrence of non-small cell lung cancer. Oncol Lett 2019; 18:2835-2844. [PMID: 31452762 PMCID: PMC6704296 DOI: 10.3892/ol.2019.10659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/17/2019] [Indexed: 12/04/2022] Open
Abstract
Cleavage polyadenylation specificity factor (CPSF) is the core component of the 3′-end processing complex, which determines the site of 3′-end cleavage interactions of specific sequence elements within pre-mRNAs. The present study revealed that all members of the CPSF complex were overexpressed in lung cancer tissue from The Cancer Genome Atlas (TCGA) Lung Cancer Cohort compared with normal lung tissue. Analysis of overall survival and recurrence-free survival verified that only CPSF3 was associated with prognosis and recurrence of lung adenocarcinoma (LUAD), and thus could be a promising biomarker. Additionally, receiver operating characteristic curve analysis revealed that CPSF3 may function as a diagnostic biomarker to distinguish between two histological subtypes of non-small cell lung cancer. Furthermore, analysis of the association of CPSF3 expression with clinicopathological parameters indicated that CPSF3 was associated with smoking history, tumor diameter, lymph node metastasis, clinical stage and radiation therapy in LUAD. Additionally, analysis of the DNA methylation data of the TCGA-LUAD Cohort revealed that CPSF3 DNA CpG sites (cg12057242 and cg25739938) were generally hypomethylated in LUAD compared with normal lung tissue. Correlation analysis identified the CPSF3 DNA CpG site cg25739938 to be negatively correlated with CPSF3 expression, while no correlation was identified with cg12057242. In addition, correlation analysis demonstrated that the overexpression of CPSF3 was correlated with CPSF3 DNA copy number variants (CNAs). The findings indicate that abnormal expression of CPSF3 may be caused by DNA CNAs; and DNA hypermethylation and function may be a promising diagnostic and prognostic indicator for LUAD.
Collapse
Affiliation(s)
- Yue Ning
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Wanxia Liu
- Center for Transforming Medicine, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xiaoying Guan
- Department of Experimental Nuclear Medicine and Radiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
16
|
Targeting cleavage and polyadenylation specific factor 1 via shRNA inhibits cell proliferation in human ovarian cancer. J Biosci 2018; 42:417-425. [PMID: 29358555 DOI: 10.1007/s12038-017-9701-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cleavage and polyadenylation specificity factor 1 (CPSF1), a member of CPSF complex, has been reported to play a key role in pre-mRNA 3'-end formation, but its possible role in ovarian cancer remains unclear. In the present study, we found the mRNA level of CPSF1 was overexpressed in ovarian cancer tissues using Oncomine Cancer Microarray database. Then the loss-of-function assays, including CCK-8, colony formation and flow cytometry assays, were performed to determine the effects of CPSF1 on cell viability, proliferation, cell cycle and apoptosis of human ovarian cancer cell lines (SKOV-3 and OVCAR-3). The results indicated that depletion of CPSF1 suppressed cell viability, impaired colony formation ability, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in ovarian cancer cells. Furthermore, knockdown of CPSF1 upregulated the expression of cleaved caspase-3 and PARP and downregulated CDK4/cyclin D1 expression. These data suggested that CPSF1 could promote ovarian cancer cell growth and proliferation in vitro and its depletion might serve as a potential therapeutic target for human ovarian cancer.
Collapse
|
17
|
Li Z, Liu H, Niu Z, Zhong W, Xue M, Wang J, Yang F, Zhou Y, Zhou Y, Xu T, Hou J. Temporal Proteomic Analysis of Pancreatic β-Cells in Response to Lipotoxicity and Glucolipotoxicity. Mol Cell Proteomics 2018; 17:2119-2131. [PMID: 30082485 DOI: 10.1074/mcp.ra118.000698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperlipidemia causes the dysfunction of pancreatic β-cells, such as apoptosis and impaired insulin secretion, which are aggravated in the presence of hyperglycemia. The underlying mechanisms, such as endoplasmic reticulum (ER) stress, oxidative stress and metabolic disorders, have been reported before; however, the time sequence of these molecular events is not fully understood. Here, using isobaric labeling-based mass spectrometry, we investigated the dynamic proteomes of INS-1 cells exposed to high palmitate in the absence and presence of high glucose. Using bioinformatics analysis of differentially expressed proteins, including the time-course expression pattern, protein-protein interaction, gene set enrichment and KEGG pathway analysis, we analyzed the dynamic features of previously reported and newly identified lipotoxicity- and glucolipotoxicity-related molecular events in more detail. Our temporal data highlight cholesterol metabolism occurring at 4 h, earlier than fatty acid metabolism that started at 8 h and likely acting as an early toxic event highly associated with ER stress induced by palmitate. Interestingly, we found that the proliferation of INS-1 cells was significantly increased at 48 h by combined treatment of palmitate and glucose. Moreover, benefit from the time-course quantitative data, we identified and validated two new molecular targets: Setd8 for cell replication and Rhob for apoptosis, demonstrating that our temporal dataset serves as a valuable resource to identify potential candidates for mechanistic studies of lipotoxicity and glucolipotoxicity in pancreatic β-cells.
Collapse
Affiliation(s)
- Zonghong Li
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,§Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Hongyang Liu
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,‖Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangjing Niu
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,‖Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhong
- ***College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan 430074, China
| | - Miaomiao Xue
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,¶College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jifeng Wang
- ‡‡Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuquan Yang
- ‡‡Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,¶College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhou
- §§ThermoFisher Scientific, Building 6, No. 27, Xin Jinqiao Rd, Pudong, Shanghai, 201206, China
| | - Yifa Zhou
- §Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China;
| | - Tao Xu
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; .,¶College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Hou
- From the ‡National Laboratory of Biomacramolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
18
|
Cao Y, Wei M, Li B, Liu Y, Lu Y, Tang Z, Lu T, Yin Y, Qin Z, Xu Z. Functional role of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in NSCLC. Oncotarget 2018; 7:24242-51. [PMID: 27003362 PMCID: PMC5029698 DOI: 10.18632/oncotarget.8168] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/02/2016] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic translation initiation factor 4 gamma 1(EIF4G1) is related to tumorigenesis and tumor progression. However, its role and the underlying mechanisms in the regulation of tumor development in non-small cell lung cancers (NSCLC) remain largely unknown. Here we report that the levels of EIF4G1 expression are much higher in NSCLC cell lines and tumor tissues than those in the normal lung cells and adjacent normal tissues from the same patients. Using shRNA to knock down EIF4G1 expression stably, we found EIF4G1 required for NSCLC cell proliferation, anchorage-independent growth, migration and invasion. Furthermore, silencing of EIF4G1 induces NSCLC cell apoptosis and causes G0/G1 cell cycle arrest. To identify the partner protein network of EIF4G1 in NSCLC cells, we found that Ubiquitin-specific protease 10 (USP10) can directly interacts with EIF4G1, while acting as a negative regulator for EIF4G1-mediated functions. Together, our results indicate that EIF4G1 functions as an oncoprotein during NSCLC development, which may represent a novel and promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yueyu Cao
- Department of Oncology, Shanghai East Hospital, Dalian Medical University, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Mengdan Wei
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bing Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yali Liu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ying Lu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhipeng Tang
- Department of Oncology, Shanghai East Hospital, Dalian Medical University, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tianbao Lu
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yujiao Yin
- Department of Oncology, Shanghai East Hospital, Dalian Medical University, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Qin
- Department of Oncology, Shanghai East Hospital, Dalian Medical University, Shanghai 200120, China.,Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Departments of Microbiology/Immunology/Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Zengguang Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
19
|
Lambert CA, Garbacki N, Colige AC. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment. Int J Biochem Cell Biol 2017; 91:84-97. [PMID: 28433505 DOI: 10.1016/j.biocel.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 01/14/2023]
|
20
|
Abstract
Epigenetic deregulation is of importance in tumorigenesis. In particular CpG islands (CGI), are frequently hypermethylated. Here, genome-wide DNA-methylation profiles of 480,000 CpGs in lung cancer cells were generated. It was observed that intra- and intergenic CGI exhibited higher methylation compared to normal cells. The functional annotation of hypermethylated CGI revealed that the hypermethylation was associated with homeobox domain genes and targets marked by repressive histone modifications. The strongest methylation variation was observed in transitional areas of CGI, termed shores. 5'-shores of promoter-associated CGI in lung cancer cell lines were higher methylated than 3'-shores. Within two tandem-oriented genes, a significant hypermethylation of the downstream-located CGI promoters was revealed. Hypermethylation correlates with the length of the intergenic region between such tandem genes. As the RASSF1A tumor suppressor gene represents such a downstream tandem gene, its silencing was analyzed using an inducible system. It was determined that the induction of an upstream gene led to a repression of RASSF1A through a process involving histone deacetylases and CPSF1. A tumor-specific increase in expression of histone deacetylases and CPSF1 was detected in lung cancer. Our results suggest that the downstream gene could be susceptible to epigenetic silencing when organized in a tandem orientation.
Collapse
|
21
|
Nacken W, Wixler V, Ehrhardt C, Ludwig S. Influenza A virus NS1 protein-induced JNK activation and apoptosis are not functionally linked. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Wolfgang Nacken
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
| | - Viktor Wixler
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
| | - Christina Ehrhardt
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
- Cluster of Excellence “Cells in Motion”; University of Muenster; Germany
- Interdisciplinary Center of Clinical Research (IZKF), UKM; WWU; Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), University Hospital Münster; WWU; Germany
- Cluster of Excellence “Cells in Motion”; University of Muenster; Germany
- Interdisciplinary Center of Clinical Research (IZKF), UKM; WWU; Germany
| |
Collapse
|
22
|
Cleavage and polyadenylation specific factor 4 targets NF-κB/cyclooxygenase-2 signaling to promote lung cancer growth and progression. Cancer Lett 2016; 381:1-13. [PMID: 27450326 DOI: 10.1016/j.canlet.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022]
Abstract
Overexpression of cyclooxygenase 2 (COX-2) is frequently found in early and advanced lung cancers. However, the precise regulatory mechanism of COX-2 in lung cancers remains unclear. Here we identified cleavage and polyadenylation specific factor 4 (CPSF4) as a new regulatory factor for COX-2 and demonstrated the role of the CPSF4/COX-2 signaling pathway in the regulation of lung cancer growth and progression. Overexpression or knockdown of CPSF4 up-regulated or suppressed the expression of COX-2 at mRNA and protein levels, and promoted or inhibited cell proliferation, migration and invasion in lung cancer cells. Inhibition or induction of COX-2 reversed the CPSF4-mediated regulation of lung cancer cell growth. Cancer cells with CPSF4 overexpression or knockdown exhibited increased or decreased expression of p-IKKα/β and p-IκBα, the translocation of p50/p65 from the cytoplasm to the nucleus, and the binding of p65 on COX-2 promoter region. In addition, CPSF4 was found to bind to COX-2 promoter sequences directly and activate the transcription of COX-2. Silencing of NF-κB expression or blockade of NF-κB activity abrogated the binding of CPSF4 on COX-2 promoter, and thereby attenuated the CPSF4-mediated up-regulation of COX-2. Moreover, CPSF4 was found to promote lung tumor growth and progression by up-regulating COX-2 expression in a xenograft lung cancer mouse model. CPSF4 overexpression or knockdown promoted or inhibited tumor growth in mice, while such regulation of tumor growth mediated by CPSF4 could be rescued through the inhibition or activation of COX-2 signaling. Correspondingly, CPSF4 overexpression or knockdown also elevated or attenuated COX-2 expression in tumor tissues of mice, while treatment with a COX-2 inducer LPS or a NF-κB inhibitor reversed this elevation or attenuation. Furthermore, we showed that CPSF4 was positively correlated with COX-2 levels in tumor tissues of lung cancer patients. Simultaneous high expression of CPSF4 and COX-2 proteins predicted poor prognosis of patients with lung cancers. Our results therefore demonstrated a novel mechanism for the transcriptional regulation of COX-2 by CPSF4 in lung cancer, and also offer a potential therapeutic target for lung cancers bearing aberrant activation of CPSF4/COX-2 signaling.
Collapse
|
23
|
Tang Z, Yu W, Zhang C, Zhao S, Yu Z, Xiao X, Tang R, Xuan Y, Yang W, Hao J, Xu T, Zhang Q, Huang W, Deng W, Guo W. CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway. Mol Oncol 2016; 10:317-29. [PMID: 26628108 PMCID: PMC5528962 DOI: 10.1016/j.molonc.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
CBP (CREB-binding protein) is a transcriptional co-activator which possesses HAT (histone acetyltransferases) activity and participates in many biological processes, including embryonic development, growth control and homeostasis. However, its roles and the underlying mechanisms in the regulation of carcinogenesis and tumor development remain largely unknown. Here we investigated the molecular mechanisms and potential targets of CBP involved in tumor growth and survival in lung cancer cells. Elevated expression of CBP was detected in lung cancer cells and tumor tissues compared to the normal lung cells and tissues. Knockdown of CBP by siRNA or inhibition of its HAT activity using specific chemical inhibitor effectively suppressed cell proliferation, migration and colony formation and induced apoptosis in lung cancer cells by inhibiting MAPK and activating cytochrome C/caspase-dependent signaling pathways. Co-immunoprecipitation and immunofluorescence analyses revealed the co-localization and interaction between CBP and CPSF4 (cleavage and polyadenylation specific factor 4) proteins in lung cancer cells. Knockdown of CPSF4 inhibited hTERT transcription and cell growth induced by CBP, and vice versa, demonstrating the synergetic effect of CBP and CPSF4 in the regulation of lung cancer cell growth and survival. Moreover, we found that high expression of both CBP and CPSF4 predicted a poor prognosis in the patients with lung adenocarcinomas. Collectively, our results indicate that CBP regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathways.
Collapse
Affiliation(s)
- Zhipeng Tang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shilei Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ranran Tang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Xuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tingting Xu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
24
|
Sung TY, Kim M, Kim TY, Kim WG, Park Y, Song DE, Park SY, Kwon H, Choi YM, Jang EK, Jeon MJ, Shong YK, Hong SJ, Kim WB. Negative Expression of CPSF2 Predicts a Poorer Clinical Outcome in Patients with Papillary Thyroid Carcinoma. Thyroid 2015; 25:1020-5. [PMID: 26148673 DOI: 10.1089/thy.2015.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The BRAF(V600E) mutation is a promising prognostic biomarker for patients with papillary thyroid carcinoma (PTC), but its prevalence differs widely among different geographic regions. A recent study reported that loss of the Cleavage and Polyadenylation Specificity Factor Subunit 2 (CPSF2) gene was associated with increased cellular invasion, cancer stem cells, and aggressiveness of PTC. This study aimed at evaluating CPSF2 protein expression as a prognostic marker for PTC in a region with a high prevalence of the BRAF(V600E) mutation, Korea. METHODS This study included 159 patients with classical PTC who underwent a total thyroidectomy and received ablative doses of (131)I. The expression of CPSF2 protein was evaluated by immunohistochemistry and graded semi-quantitatively. The presence of the BRAF(V600E) mutation was evaluated by direct sequencing. RESULTS Negative protein expression of CPSF2 was observed in 34 (21.3%) of the 159 PTCs. In multivariate analysis, negative CPSF2 expression was significantly associated with cervical lymph node metastasis (odds ratio [OR]=2.56, p=0.28), and distant metastasis (OR=3.48, p=0.02). After adjusting for age, sex, tumor size, extrathyroidal invasion, lymphovascular invasion, and the BRAF(V600E) mutation, the CPSF2-negative group had a significantly lower recurrence-free survival compared to the CPSF2-positive group (hazard ratio=2.14, p=0.03). CONCLUSION Negative protein expression of CPSF2 is independently associated with a poor clinical outcome in PTC. CPSF2 could be a useful prognostic marker for PTC in regions with a high prevalence of the BRAF(V600E) mutation.
Collapse
Affiliation(s)
- Tae Yon Sung
- 1 Department of Surgery, University of Ulsan College of Medicine , Seoul, Korea
| | - Mijin Kim
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Tae Yong Kim
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Won Gu Kim
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Yangsoon Park
- 3 Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Dong Eun Song
- 3 Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Su-Yeon Park
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Hyemi Kwon
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Yun Mi Choi
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Eun Kyung Jang
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Min Ji Jeon
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Young Kee Shong
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| | - Suck Joon Hong
- 1 Department of Surgery, University of Ulsan College of Medicine , Seoul, Korea
| | - Won Bae Kim
- 2 Department of Internal Medicine, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
25
|
Chakrabarti M, Hunt AG. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants. Biomolecules 2015; 5:1151-68. [PMID: 26061761 PMCID: PMC4496715 DOI: 10.3390/biom5021151] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
26
|
Bottardi S, Mavoungou L, Milot E. IKAROS: a multifunctional regulator of the polymerase II transcription cycle. Trends Genet 2015; 31:500-8. [PMID: 26049627 DOI: 10.1016/j.tig.2015.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
Abstract
Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada.
| |
Collapse
|