1
|
Zou T, Neiswanger K, Feingold E, Foxman B, McNeil DW, Marazita ML, Shaffer JR. Potential risk factors and genetic variants associated with dental caries incidence in Appalachia using genome-wide survival analysis. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2023; 14:19-33. [PMID: 37736056 PMCID: PMC10509536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE The aim of this study was to identify the potential risk factors and genetic variants associated with dental caries incidence using survival analysis. METHODS The Center for Oral Health Research in Appalachia recruited and prospectively followed pregnant women and their children. A total of 909 children followed from birth for up to 7 years were included in this study. Annual intra-oral examinations were performed to assess dental caries experience including the approximate time to first caries incidence in the primary dentition. Cox proportional hazards models were used to assess the associations of time to first caries incidence with self-reported risk factors and 4.9 million genetic variants ascertained using a genome-wide genotyping array. RESULTS A total of 196 of 909 children (21.56%) had their first primary tooth caries event during follow-up. Household income, home water source, and mother's educational attainment were significantly associated with time to first caries incidence in the stepwise Cox model. The heritability (i.e., proportion of variance explained by genetics) of time to first caries was 0.54. Though no specific genetic variants were associated at the genome-wide significance level (P < 5E-8), we identified 14 loci at the suggestive significance level (5E-8 < P < 1E-5), some of which were located within or near genes with plausible biological functions in dental caries. CONCLUSION Our findings indicate that household income, home water source, and mother's educational attainment are independent risk factors for dental caries incidence. We nominate several suggestive loci for further investigation.
Collapse
Affiliation(s)
- Tianyu Zou
- Department of Human Genetics, School of Public Health, University of PittsburghPittsburgh, PA, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, School of Public Health, University of PittsburghPittsburgh, PA, USA
- Department of Biostatistics, School of Public Health, University of PittsburghPittsburgh, PA, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public HealthAnn Arbor, MI, USA
| | - Daniel W McNeil
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of FloridaGainesville, FL, USA
| | - Mary L Marazita
- Department of Human Genetics, School of Public Health, University of PittsburghPittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
- Clinical and Translational Sciences, School of Medicine, University of PittsburghPittsburgh, PA, USA
| | - John R Shaffer
- Department of Human Genetics, School of Public Health, University of PittsburghPittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
2
|
Zeng R, Xiong X. Effect of NMB-regulated ERK1/2 and p65 signaling pathway on proliferation and apoptosis of cervical cancer. Pathol Res Pract 2022; 238:154104. [PMID: 36095918 DOI: 10.1016/j.prp.2022.154104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Aberrant expression of Neuromedin B (NMB) is associated with the malignant progression of cancer, such as breast cancer, lung cancer and glioma. However, the role of NMB in cervical cancer remains unclear. The present study found that NMB and its receptor NMBR are aberrantly expressed in cervical cancer. NMB activates ERK1/2 and NF-κB signaling pathways, which promote the proliferation of cervical cancer cells and increase the expression of tumor necrosis factor α (TNF-α). The downregulation of NMBR by the specific inhibitor, PD168368, abrogates proliferation and promotes apoptosis of cervical cancer cells. In addition, the NMB/NMBR signaling axis mediates the promoting effect of cancer-associated adipocytes on cervical cancer progression. These findings demonstrate the potential role of NMB/NMBR-regulated ERK1/2 and p65 signaling pathway in cervical cancer progression, which provide new opportunities to diagnose and treat cervical cancer.
Collapse
Affiliation(s)
- Ruijiang Zeng
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Kimura S, Takeshita N, Oyanagi T, Seki D, Jiang W, Hidaka K, Fukumoto S, Takahashi I, Takano-Yamamoto T. HIF-2α Inhibits Ameloblast Differentiation via Hey2 in Tooth Development. J Dent Res 2022; 101:1637-1644. [PMID: 35912776 DOI: 10.1177/00220345221111971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enamel is the highly mineralized outer layer of teeth; the cells responsible for enamel formation are ameloblasts. Local hypoxia and hypoxia inducible factor (HIF) in embryonic tissues are important to promote normal organogenesis. However, hypoxic state in tooth germs and the roles of HIF in ameloblast differentiation have not been understood. The aim of this study is to clarify the role of HIF in ameloblast differentiation during tooth germ development. We found that tooth germs were under hypoxia and HIF-1α and HIF-2α were expressed in tooth germs in embryonic mice. Then, we used HIF inhibitors to evaluate the function of HIF during tooth germ development. The HIF-2α inhibitor significantly decreased the size of tooth germs in organ culture, while the HIF-1α inhibitor did not apparently affect the size of tooth germs. The HIF-2α inhibitor enhanced the expression of amelogenin, a marker of ameloblast differentiation, in the tooth germs in organ culture and rat dental epithelial SF2 cells. Moreover, we found that the HIF-2α inhibitor-stimulating amelogenin expression was regulated by hes-related family basic helix-loop-helix transcription factor with YRPW motif 2(Hey2) in SF2 cells. These findings suggest that the HIF-2α-Hey2 axis plays an important role in ameloblast differentiation during tooth germ development.
Collapse
Affiliation(s)
- S Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - N Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - D Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - W Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - K Hidaka
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - S Fukumoto
- Division of Pediatric Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Oral Medicine for Children, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - I Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Garczyk S, Klotz N, Szczepanski S, Denecke B, Antonopoulos W, von Stillfried S, Knüchel R, Rose M, Dahl E. Oncogenic features of neuromedin U in breast cancer are associated with NMUR2 expression involving crosstalk with members of the WNT signaling pathway. Oncotarget 2018; 8:36246-36265. [PMID: 28423716 PMCID: PMC5482652 DOI: 10.18632/oncotarget.16121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Neuromedin U (NMU) has been shown driving the progression of various tumor entities, including breast cancer. However, the expression pattern of NMU and its receptors in breast cancer tissues as well as systematic insight into mechanisms and downstream targets of the NMU-driven signaling pathways are still elusive. Here, NMU expression was found up-regulated in all breast cancer subtypes when compared to healthy breast tissue. Using an in silico dataset comprising 1,195 samples, high NMU expression was identified as an indicator of poor outcome in breast tumors showing strong NMUR2 expression. Next, the biological impact of NMU on breast cancer cells in relation to NMUR2 expression was analyzed. Ectopic NMU expression reduced colony growth while promoting a motile phenotype in NMUR2-positive SKBR3 but not NMUR2-negative Hs578T cells. To uncover signaling pathways and key molecules affected by NMU in SKBR3 cells, Affymetrix microarray analysis was applied. Forced NMU expression affected molecules involved in WNT receptor signaling among others. As such we demonstrated enhanced activation of the WNT/planar cell polarity (PCP) effector RAC1 and down-regulation of canonical WNT targets such as MYC. In summary, NMU might contribute to progression of NMUR2-positive breast cancer representing a potential druggable target for future personalized strategies.
Collapse
Affiliation(s)
- Stefan Garczyk
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Natalie Klotz
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Sabrina Szczepanski
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Bernd Denecke
- IZKF Aachen, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Wiebke Antonopoulos
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Saskia von Stillfried
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Michael Rose
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|