1
|
Pan F, Massey SC. Dye coupling of horizontal cells in the primate retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1173706. [PMID: 38983052 PMCID: PMC11182241 DOI: 10.3389/fopht.2023.1173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
In the monkey retina, there are two distinct types of axon-bearing horizontal cells, known as H1 and H2 horizontal cells (HCs). In this study, cell bodies were prelabled using 4',6-diamidino-2-phenylindole (DAPI), and both H1 and H2 horizontal cells were filled with Neurobiotin™ to reveal their coupling, cellular details, and photoreceptor contacts. The confocal analysis of H1 and H2 HCs was used to assess the colocalization of terminal dendrites with glutamate receptors at cone pedicles. After filling H1 somas, a large coupled mosaic of H1 cells was labeled. The dendritic terminals of H1 cells contacted red/green cone pedicles, with the occasional sparse contact with blue cone pedicles observed. The H2 cells were also dye-coupled. They had larger dendritic fields and lower densities. The dendritic terminals of H2 cells preferentially contacted blue cone pedicles, but additional contacts with nearly all cones within the dendritic field were still observed. The red/green cones constitute 99% of the input to H1 HCs, whereas H2 HCs receive a more balanced input, which is composed of 58% red/green cones and 42% blue cones. These observations confirm those made in earlier studies on primate horizontal cells by Dacey and Goodchild in 1996. Both H1 and H2 HCs were axon-bearing. H1 axon terminals (H1 ATs) were independently coupled and contacted rod spherules exclusively. In contrast, the H2 axon terminals contacted cones, with some preference for blue cone pedicles, as reported by Chan and Grünert in 1998. The primate retina contains three independently coupled HC networks in the outer plexiform layer (OPL), identified as H1 and H2 somatic dendrites, and H1 ATs. At each cone pedicle, the colocalization of both H1 and H2 dendritic tips with GluA4 subunits close to the cone synaptic ribbons indicates that glutamate signaling from the cones to H1 and H2 horizontal cells is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Hagiwara A, Mizutani A, Kawamura S, Abe M, Hida Y, Sakimura K, Ohtsuka T. Critical Role of the Presynaptic Protein CAST in Maintaining the Photoreceptor Ribbon Synapse Triad. Int J Mol Sci 2023; 24:ijms24087251. [PMID: 37108413 PMCID: PMC10138387 DOI: 10.3390/ijms24087251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the β subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Ayako Mizutani
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Saki Kawamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yamato Hida
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
3
|
Behrens C, Yadav SC, Korympidou MM, Zhang Y, Haverkamp S, Irsen S, Schaedler A, Lu X, Liu Z, Lause J, St-Pierre F, Franke K, Vlasits A, Dedek K, Smith RG, Euler T, Berens P, Schubert T. Retinal horizontal cells use different synaptic sites for global feedforward and local feedback signaling. Curr Biol 2022; 32:545-558.e5. [PMID: 34910950 PMCID: PMC8886496 DOI: 10.1016/j.cub.2021.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.
Collapse
Affiliation(s)
- Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Shubhash Chandra Yadav
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Yue Zhang
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Silke Haverkamp
- Department of Computational Neuroethology, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Anna Schaedler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Xiaoyu Lu
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA
| | - Zhuohe Liu
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jan Lause
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, 6500 Main St., Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Anna Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Karin Dedek
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany; Tübingen AI Center, University of Tübingen, Maria-von-Linden-Straße 6, 72076 Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
5
|
Function of cone and cone-related pathways in Ca V1.4 IT mice. Sci Rep 2021; 11:2732. [PMID: 33526839 PMCID: PMC7851161 DOI: 10.1038/s41598-021-82210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
CaV1.4 L-type calcium channels are predominantly expressed in photoreceptor terminals playing a crucial role for synaptic transmission and, consequently, for vision. Human mutations in the encoding gene are associated with congenital stationary night blindness type-2. Besides rod-driven scotopic vision also cone-driven photopic responses are severely affected in patients. The present study therefore examined functional and morphological changes in cones and cone-related pathways in mice carrying the CaV1.4 gain-of function mutation I756T (CaV1.4-IT) using multielectrode array, patch-clamp and immunohistochemical analyses. CaV1.4-IT ganglion cell responses to photopic stimuli were seen only in a small fraction of cells indicative of a major impairment in the cone pathway. Though cone photoreceptors underwent morphological rearrangements, they retained their ability to release glutamate. Our functional data suggested a postsynaptic cone bipolar cell defect, supported by the fact that the majority of cone bipolar cells showed sprouting, while horizontal cells maintained contacts with cones and cone-to-horizontal cell input was preserved. Furthermore a reduction of basal Ca2+ influx by a calcium channel blocker was not sufficient to rescue synaptic transmission deficits caused by the CaV1.4-IT mutation. Long term treatments with low-dose Ca2+ channel blockers might however be beneficial reducing Ca2+ toxicity without major effects on ganglion cells responses.
Collapse
|
6
|
Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D, Schubert T, Euler T, Franke K. Neural circuits in the mouse retina support color vision in the upper visual field. Nat Commun 2020; 11:3481. [PMID: 32661226 PMCID: PMC7359335 DOI: 10.1038/s41467-020-17113-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Color vision is essential for an animal’s survival. It starts in the retina, where signals from different photoreceptor types are locally compared by neural circuits. Mice, like most mammals, are dichromatic with two cone types. They can discriminate colors only in their upper visual field. In the corresponding ventral retina, however, most cones display the same spectral preference, thereby presumably impairing spectral comparisons. In this study, we systematically investigated the retinal circuits underlying mouse color vision by recording light responses from cones, bipolar and ganglion cells. Surprisingly, most color-opponent cells are located in the ventral retina, with rod photoreceptors likely being involved. Here, the complexity of chromatic processing increases from cones towards the retinal output, where non-linear center-surround interactions create specific color-opponent output channels to the brain. This suggests that neural circuits in the mouse retina are tuned to extract color from the upper visual field, aiding robust detection of predators and ensuring the animal’s survival. Mice are able to discriminate colors, at least in the upper visual field. Here, the authors provide a comprehensive characterization of retinal circuits underlying this behavior.
Collapse
Affiliation(s)
- Klaudia P Szatko
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Eliminating Glutamatergic Input onto Horizontal Cells Changes the Dynamic Range and Receptive Field Organization of Mouse Retinal Ganglion Cells. J Neurosci 2018; 38:2015-2028. [PMID: 29352045 DOI: 10.1523/jneurosci.0141-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells. To study this, we generated a genetically modified mouse line in which we eliminated the light dependency of feedback by deleting glutamate receptors from mouse horizontal cells. This genetic modification allowed us to investigate the impact of horizontal cells on ganglion cell signaling independent of the actual mode of feedback in the outer retina and without pharmacological manipulation of signal transmission. In control and genetically modified mice (both sexes), we recorded the light responses of transient OFF-α retinal ganglion cells in the intact retina. Excitatory postsynaptic currents (EPSCs) were reduced and the cells were tuned to lower temporal frequencies and higher contrasts, presumably because photoreceptor output was attenuated. Moreover, receptive fields of recorded cells showed a significantly altered surround structure. Our data thus suggest that horizontal cells are responsible for adjusting the dynamic range of retinal ganglion cells and, together with amacrine cells, contribute to the center/surround organization of ganglion cell receptive fields in the mouse.SIGNIFICANCE STATEMENT Horizontal cells represent a major neuronal class in the mammalian retina and provide lateral feedback and feedforward signals to photoreceptors and bipolar cells, respectively. The mode of signal transmission remains controversial and, moreover, the contribution of horizontal cells to visual processing is still elusive. To address the question of how horizontal cells affect retinal output signals, we recorded the light responses of transient OFF-α retinal ganglion cells in a newly generated mouse line. In this mouse line, horizontal cell signals were no longer modulated by light. With light response recordings, we show that horizontal cells increase the dynamic range of retinal ganglion cells for contrast and temporal changes and contribute to the center/surround organization of their receptive fields.
Collapse
|
8
|
Chapot CA, Behrens C, Rogerson LE, Baden T, Pop S, Berens P, Euler T, Schubert T. Local Signals in Mouse Horizontal Cell Dendrites. Curr Biol 2017; 27:3603-3615.e5. [PMID: 29174891 DOI: 10.1016/j.cub.2017.10.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023]
Abstract
The mouse retina contains a single type of horizontal cell, a GABAergic interneuron that samples from all cone photoreceptors within reach and modulates their glutamatergic output via parallel feedback mechanisms. Because horizontal cells form an electrically coupled network, they have been implicated in global signal processing, such as large-scale contrast enhancement. Recently, it has been proposed that horizontal cells can also act locally at the level of individual cone photoreceptors. To test this possibility physiologically, we used two-photon microscopy to record light stimulus-evoked Ca2+ signals in cone axon terminals and horizontal cell dendrites as well as glutamate release in the outer plexiform layer. By selectively stimulating the two mouse cone opsins with green and UV light, we assessed whether signals from individual cones remain isolated within horizontal cell dendritic tips or whether they spread across the dendritic arbor. Consistent with the mouse's opsin expression gradient, we found that the Ca2+ signals recorded from dendrites of dorsal horizontal cells were dominated by M-opsin and those of ventral horizontal cells by S-opsin activation. The signals measured in neighboring horizontal cell dendritic tips varied markedly in their chromatic preference, arguing against global processing. Rather, our experimental data and results from biophysically realistic modeling support the idea that horizontal cells can process cone input locally, extending the classical view of horizontal cell function. Pharmacologically removing horizontal cells from the circuitry reduced the sensitivity of the cone signal to low frequencies, suggesting that local horizontal cell feedback shapes the temporal properties of cone output.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Luke E Rogerson
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Sinziana Pop
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol 2017; 595:5495-5506. [PMID: 28378516 DOI: 10.1113/jp274177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a 'ribbon'. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Vila A, Whitaker CM, O'Brien J. Membrane-associated guanylate kinase scaffolds organize a horizontal cell synaptic complex restricted to invaginating contacts with photoreceptors. J Comp Neurol 2016; 525:850-867. [PMID: 27558197 DOI: 10.1002/cne.24101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Synaptic processes and plasticity of synapses are mediated by large suites of proteins. In most cases, many of these proteins are tethered together by synaptic scaffold proteins. Scaffold proteins have a large number and typically a variety of protein interaction domains that allow many different proteins to be assembled into functional complexes. Because each scaffold protein has a different set of protein interaction domains and a unique set of interacting partners, the presence of synaptic scaffolds can provide insight into the molecular mechanisms that regulate synaptic processes. In studies of rabbit retina, we found SAP102 and Chapsyn110 selectively localized in the tips of B-type horizontal cell processes, where they contact cone and rod photoreceptors. We further identified some known SAP102 binding partners, kainate receptor GluR6/7 and inward rectifier potassium channel Kir2.1, closely associated with SAP102 in photoreceptor invaginations. The kainate receptor occupies a position distinct from that of the majority of AMPA receptors that dominate the horizontal cell postsynaptic response. GluR6/7 and Kir2.1 presumably are involved in synaptic processes that govern cell-to-cell communication and could both contribute in different ways to synaptic currents that mediate feedback signaling. Notably, we failed to find evidence for the presence of Cx57 or Cx59 that might be involved in ephaptic feedback signaling in this complex. The presence of SAP102 and its binding partners in both cone and rod invaginating synapses suggests that whatever mechanism is supported by this protein complex is present in both types of photoreceptors. J. Comp. Neurol. 525:850-867, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| | - Christopher M Whitaker
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - John O'Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| |
Collapse
|
11
|
Hirano AA, Liu X, Boulter J, Grove J, Pérez de Sevilla Müller L, Barnes S, Brecha NC. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels. eNeuro 2016; 3:ENEURO.0148-15.2016. [PMID: 27022629 PMCID: PMC4785380 DOI: 10.1523/eneuro.0148-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors.
Collapse
Affiliation(s)
- Arlene A. Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Xue Liu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Jim Boulter
- Department of Psychiatry and Biobehavioral Sciences, Hatos Research Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - James Grove
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Steven Barnes
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
12
|
Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina. Eur J Neurosci 2015; 42:2615-32. [PMID: 26173960 DOI: 10.1111/ejn.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
As all visual information is represented in the spatio-temporal dynamics of transmitter release from photoreceptors and the combined postsynaptic responses of second-order neurons, appropriate synaptic transfer functions are fundamental for a meaningful perception of the visual world. The functional contribution of horizontal cells to gain control and organization of bipolar and ganglion cell receptive fields can only be evaluated with an in-depth understanding of signal processing in horizontal cells. Therefore, a horizontal slice preparation of the mouse retina was established to record from horizontal cell bodies with their dendritic fields intact and receiving functional synaptic input from cone photoreceptors. Horizontal cell bodies showed spontaneous excitatory currents (spEPSCs) of monophasic and more complex multi-peak waveforms. spEPSCs were induced by quantal release of glutamate from presynaptic cones with a unitary amplitude of 3 pA. Non-stationary noise analysis revealed that spEPSCs with a monoexponential decay were mediated by 7-8 glutamate receptors with a single-channel amplitude of 1.55 pA. Responses to photopic full-field illumination were characterized by reduction of a tonic inward current or hyperpolarization, inhibition of spEPSCs, followed by a fast and transient inward current at light offset. The response to periodic dark/light transitions of different frequencies was dependent on the adaptational status of the cell with a limiting frequency of 10 Hz. Both on and off components of the light response were mediated by AMPA and kainate receptors. Detailed analysis of horizontal cell synaptic physiology is a prerequisite for understanding signal coding and processing at the photoreceptor ribbon synapse.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| | - Norbert Babai
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| |
Collapse
|
13
|
Dorgau B, Herrling R, Schultz K, Greb H, Segelken J, Ströh S, Bolte P, Weiler R, Dedek K, Janssen-Bienhold U. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J Comp Neurol 2015; 523:2062-81. [PMID: 25823610 DOI: 10.1002/cne.23779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/06/2022]
Abstract
Horizontal cells in the mouse retina are of the axon-bearing B-type and contribute to the gain control of photoreceptors and to the center-surround organization of bipolar cells by providing feedback and feedforward signals to photoreceptors and bipolar cells, respectively. Horizontal cells form two independent networks, coupled by dendro-dendritic and axo-axonal gap junctions composed of connexin57 (Cx57). In Cx57-deficient mice, occasionally the residual tracer coupling of horizontal cell somata was observed. Also, negative feedback from horizontal cells to photoreceptors, potentially mediated by connexin hemichannels, appeared unaffected. These results point to the expression of a second connexin in mouse horizontal cells. We investigated the expression of Cx50, which was recently identified in axonless A-type horizontal cells of the rabbit retina. In the mouse retina, Cx50-immunoreactive puncta were predominantly localized on large axon terminals of horizontal cells. Electron microscopy did not reveal any Cx50-immunolabeling at the membrane of horizontal cell tips invaginating photoreceptor terminals, ruling out the involvement of Cx50 in negative feedback. Moreover, Cx50 colocalized only rarely with Cx57 on horizontal cell processes, indicating that both connexins form homotypic rather than heterotypic or heteromeric gap junctions. To check whether the expression of Cx50 is changed when Cx57 is lacking, we compared the Cx50 expression in wildtype and Cx57-deficient mice. However, Cx50 expression was unaffected in Cx57-deficient mice. In summary, our results indicate that horizontal cell axon terminals form two independent sets of homotypic gap junctions, a feature which might be important for light adaptation in the retina.
Collapse
Affiliation(s)
- Birthe Dorgau
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Regina Herrling
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Konrad Schultz
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Helena Greb
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Jasmin Segelken
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Sebastian Ströh
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Petra Bolte
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK.,Animal Navigation, University of Oldenburg, Oldenburg, Germany
| | | | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, D-26111, Oldenburg, Germany
| | | |
Collapse
|
14
|
Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 2014; 34:11826-43. [PMID: 25164677 DOI: 10.1523/jneurosci.0272-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Controlling neurotransmitter release by modulating the presynaptic calcium level is a key mechanism to ensure reliable signal transmission from one neuron to the next. In this study, we investigated how the glutamatergic output of cone photoreceptors (cones) in the mouse retina is shaped by different feedback mechanisms from postsynaptic GABAergic horizontal cells (HCs) using a combination of two-photon calcium imaging and pharmacology at the level of individual cone axon terminals. We provide evidence that hemichannel-mediated (putative ephaptic) feedback sets the cone output gain by defining the basal calcium level, a mechanism that may be crucial for adapting cones to the ambient light level. In contrast, pH-mediated feedback did not modulate the cone basal calcium level but affected the size and shape of light-evoked cone calcium signals in a contrast-dependent way: low-contrast light responses were amplified, whereas high-contrast light responses were reduced. Finally, we provide functional evidence that GABA shapes light-evoked calcium signals in cones. Because we could not localize ionotropic GABA receptors on cone axon terminals using electron microscopy, we suggest that GABA may act through GABA autoreceptors on HCs, thereby possibly modulating hemichannel- and/or pH-mediated feedback. Together, our results suggest that at the cone synapse, hemichannel-mediated (ephaptic) and pH-mediated feedback fulfill distinct functions to adjust the output of cones to changing ambient light levels and stimulus contrasts and that the efficacy of these feedback mechanisms is likely modulated by GABA release in the outer retina.
Collapse
|
15
|
Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits 2014; 8:108. [PMID: 25249942 PMCID: PMC4155782 DOI: 10.3389/fncir.2014.00108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca(2+) imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Thomas Euler
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Timm Schubert
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
| |
Collapse
|
16
|
Guo D, Du Y, Wu Q, Jiang W, Bi H. Disrupted calcium homeostasis is involved in elevated zinc ion-induced photoreceptor cell death. Arch Biochem Biophys 2014; 560:44-51. [PMID: 25051343 DOI: 10.1016/j.abb.2014.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 01/02/2023]
Abstract
Zinc (Zn), the second abundant trace element in living organisms, plays an important role in regulating cell metabolism, signaling, proliferation, gene expression and apoptosis. Meanwhile, the overload of Zn will disrupt the intracellular calcium homeostasis via impairing mitochondrial function. However, the specific molecular mechanism underlying zinc-induced calcium regulation remains poorly understood. In the present study, using zinc chloride (ZnCl2) as a stressor, we investigated the effect of exogenous Zn(2+) in regulating murine photoreceptor cell viability, reactive oxygen species (ROS), cell cycle distribution and calcium homeostasis as well as plasma membrane calcium ATPase (PMCA) isoforms (PMCA1 and PMCA2, i.e., ATP2B1, ATP2B2) expression. We found that the exogenous Zn(2+) in the exposure range (31.25-125.0 μmol/L) results in the overgeneration of ROS, cell cycle arrest at G2/M phases, elevation of cytosolic [Ca(2+)], inactivation of Ca(2+)-ATPase and reduction of both PMCA1 and PMCA2 in 661 W cells, and thus induces cell death. In conclusion, ZnCl2 exposure can elevate the cytosolic [Ca(2+)], disrupt the intracellular calcium homeostasis, further initiate Ca(2+)-dependent signaling pathway in 661 W cells, and finally cause cell death. Our results will facilitate the understanding of cell death induced by the zinc ion-mediated calcium homeostasis disruption.
Collapse
Affiliation(s)
- Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yuxiang Du
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Qiuxin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Wenjun Jiang
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
| |
Collapse
|