1
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Su Y, Fang J, Zeeshan Ul Haq M, Yang W, Yu J, Yang D, Liu Y, Wu Y. Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Peanut ( Arachis hypogea L.) Revealed Its Crucial Role in Growth and Multiple Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2077. [PMID: 39124195 PMCID: PMC11313903 DOI: 10.3390/plants13152077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Casparian strip membrane domain proteins (CASPs), regulating the formation of Casparian strips in plants, serve crucial functions in facilitating plant growth, development, and resilience to abiotic stress. However, little research has focused on the characteristics and functions of AhCASPs in cultivated peanuts. In this study, the genome-wide identification and expression analysis of the AhCASPs gene family was performed using bioinformatics and transcriptome data. Results showed that a total of 80 AhCASPs members on 20 chromosomes were identified and divided into three subclusters, which mainly localized to the cell membrane. Ka/Ks analysis revealed that most of the genes underwent purifying selection. Analysis of cis elements suggested the possible involvement of AhCASPs in hormonal and stress responses, including GA, MeJA, IAA, ABA, drought, and low temperature. Moreover, 20 different miRNAs for 37 different AhCASPs genes were identified by the psRNATarget service. Likewise, transcriptional analysis revealed key AhCASPs responding to various stresses, hormonal processing, and tissue types, including 33 genes in low temperature and drought stress and 41 genes in tissue-specific expression. These results provide an important theoretical basis for the functions of AhCASPs in growth, development, and multiple stress resistance in cultivated peanuts.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jieyun Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Wanli Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou 570228, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
3
|
Yun A, Kang J, Lee J, Song SJ, Hwang I. Design of an artificial transcriptional system for production of high levels of recombinant proteins in tobacco ( Nicotiana benthamiana). FRONTIERS IN PLANT SCIENCE 2023; 14:1138089. [PMID: 36909433 PMCID: PMC9995837 DOI: 10.3389/fpls.2023.1138089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plants have recently received much attention as a means of producing recombinant proteins because they are easy to grow at a low cost and at a large scale. Although many plant protein expression systems have been developed, there remains a need for improved systems that deliver high yields of recombinant proteins. Transcription of the recombinant gene is a key step in increasing the yield of recombinant proteins. However, revealed strong promoters, terminators, and transcription factors that have been identified do not necessarily lead to high level production of recombinant proteins. Thus, in this study, a robust expression system was designed to produce high levels of recombinant protein consisting of a novel hybrid promoter, FM'M-UD, coupled with an artificial terminator, 3PRt. FM'M-UD contained fragments from three viral promoters (the promoters of Mirabilis mosaic caulimovirus (MMV) full-length transcript, the MMV subgenomic transcript, and figwort mosaic virus subgenomic transcript) and two types of cis-acting elements (four GAL4 binding sites and two zinc finger binding sites). The artificial terminator, 3PRt, consisted of the PINII and 35S terminators plus RB7, a matrix attachment region. The FM'M-UD promoter increased protein levels of reporters GFP, RBD : SD1 (part of S protein from SARS-CoV-2), and human interleukin-6 (hIL6) by 4-6-fold, 2-fold, and 6-fold, respectively, relative to those of the same reporters driven by the CaMV 35S promoter. Furthermore, when the FM'M-UD/3PRt expression cassette was expressed together with GAL4/TAC3d2, an artificial transcription factor that bound the GAL4 binding sites in FM'M-UD, levels of hIL6 increased by 10.7-fold, relative to those obtained from the CaMV 35S promoter plus the RD29B terminator. Thus, this novel expression system led to the production of a large amount of recombinant protein in plants.
Collapse
|
4
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Chen S, Guan L, Zhao X, Yang J, Chen L, Guo M, Zhao J, Chen C, Zhou Y, Han Y, Xu L. Optimized thyroid transcription factor-1 core promoter-driven microRNA-7 expression effectively inhibits the growth of human non-small-cell lung cancer cells. J Zhejiang Univ Sci B 2022; 23:915-930. [PMID: 36379611 PMCID: PMC9676096 DOI: 10.1631/jzus.b2200116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/22/2022] [Indexed: 07/22/2023]
Abstract
Targeted gene therapy has become a promising approach for lung cancer treatment. In our previous work, we reported that the targeted expression of microRNA-7 (miR-7) operated by thyroid transcription factor-1 (TTF-1) promoter inhibited the growth of human lung cancer cells in vitro and in vivo; however, the intervention efficiency needed to be further improved. In this study, we identified the core promoter of TTF-1 (from -1299 bp to -871 bp) by 5' deletion assay and screened out the putative transcription factors nuclear factor-1 (NF-1) and activator protein-1 (AP-1). Further analysis revealed that the expression level of NF-1, but not AP-1, was positively connected with the activation of TTF-1 core promoter in human non-small-cell lung cancer (NSCLC) cells. Moreover, the silencing of NF-1 could reduce the expression level of miR-7 operated by TTF-1 core promoter. Of note, we optimized four distinct sequences to form additional NF-1-binding sites (TGGCA) in the sequence of TTF-1 core promoter (termed as optTTF-1 promoter), and verified the binding efficiency of NF-1 on the optTTF-1 promoter by electrophoretic mobility shift assay (EMSA). As expected, the optTTF-1 promoter could more effectively drive miR-7 expression and inhibit the growth of human NSCLC cells in vitro, accompanied by a reduced transduction of NADH dehydrogenase (ubiquinone) 1α subcomplex 4 (NDUFA4)/protein kinase B (Akt) pathway. Consistently, optTTF-1 promoter-driven miR-7 expression could also effectively abrogate the growth and metastasis of tumor cells in a murine xenograft model of human NSCLC. Finally, no significant changes were detected in the biological indicators or the histology of some important tissues and organs, including heart, liver, and spleen. On the whole, our study revealed that the optimized TTF-1 promoter could more effectively operate miR-7 to influence the growth of human NSCLC cells, providing a new basis for the development of microRNA-based targeting gene therapy against clinical lung cancer.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lian Guan
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China. ,
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China. ,
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Zunyi 563000, China. ,
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China.
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
6
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
7
|
Ivanenko KA, Prassolov VS, Khabusheva ER. Transcription Factor Sp1 in the Expression of Genes Encoding Components of Mapk, JAK/STAT, and PI3K/Akt Signaling Pathways. Mol Biol 2022. [DOI: 10.1134/s0026893322050089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
9
|
Kim C, Wang X, Kültz D. Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a Tilapia Cell Line. Life (Basel) 2022; 12:787. [PMID: 35743818 PMCID: PMC9225295 DOI: 10.3390/life12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.
Collapse
Affiliation(s)
- Chanhee Kim
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Dietmar Kültz
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| |
Collapse
|
10
|
Abd Alla J, Quitterer U. The RAF Kinase Inhibitor Protein (RKIP): Good as Tumour Suppressor, Bad for the Heart. Cells 2022; 11:cells11040654. [PMID: 35203304 PMCID: PMC8869954 DOI: 10.3390/cells11040654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-632-9801
| |
Collapse
|
11
|
RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers (Basel) 2021; 13:cancers13246247. [PMID: 34944867 PMCID: PMC8699197 DOI: 10.3390/cancers13246247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The human body consists of tissues and organs formed by cells. In each cell there is a switch that allows the cell to divide or not. In contrast, cancer cells have their switch on which allow them to divide and invade other sites leading to death. Over two decades ago, Doctor Kam Yeung, University of Toledo, Ohio, has identified a factor (RKIP) that is responsible for the on/off switch which functions normally in healthy tissues but is inactive or absent in cancers. Since this early discovery, many additional properties have been ascribed to RKIP including its role in inhibiting cancer metastasis and resistance to therapeutics and its role in modulating the normal immune response. This review describes all of the above functions of RKIP and suggesting therapeutics to induce RKIP in cancers to inhibit their growth and metastases as well as inhibit its activity to treat non-cancerous inflammatory diseases. Abstract Several gene products play pivotal roles in the induction of inflammation and the progression of cancer. The Raf kinase inhibitory protein (RKIP) is a cytosolic protein that exerts pleiotropic activities in such conditions, and thus regulates oncogenesis and immune-mediated diseases through its deregulation. Herein, we review the general properties of RKIP, including its: (i) molecular structure; (ii) involvement in various cell signaling pathways (i.e., inhibition of the Raf/MEK/ERK pathway; the NF-kB pathway; GRK-2 or the STAT-3 pathway; as well as regulation of the GSK3Beta signaling; and the spindle checkpoints); (iii) regulation of RKIP expression; (iv) expression’s effects on oncogenesis; (v) role in the regulation of the immune system to diseases (i.e., RKIP regulation of T cell functions; the secretion of cytokines and immune mediators, apoptosis, immune check point inhibitors and RKIP involvement in inflammatory diseases); and (vi) bioinformatic analysis between normal and malignant tissues, as well as across various immune-related cells. Overall, the regulation of RKIP in different cancers and inflammatory diseases suggest that it can be used as a potential therapeutic target in the treatment of these diseases.
Collapse
|
12
|
Lai TH, Ahmed M, Hwang JS, Zada S, Pham TM, Elashkar O, Kim DR. Transcriptional Repression of Raf Kinase Inhibitory Protein Gene by Metadherin during Cancer Progression. Int J Mol Sci 2021; 22:ijms22063052. [PMID: 33802672 PMCID: PMC8002422 DOI: 10.3390/ijms22063052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Raf kinase inhibitory protein (RKIP), also known as a phosphatidylethanolamine-binding protein 1 (PEBP1), functions as a tumor suppressor and regulates several signaling pathways, including ERK and NF-κB. RKIP is severely downregulated in human malignant cancers, indicating a functional association with cancer metastasis and poor prognosis. The transcription regulation of RKIP gene in human cancers is not well understood. In this study, we suggested a possible transcription mechanism for the regulation of RKIP in human cancer cells. We found that Metadherin (MTDH) significantly repressed the transcriptional activity of RKIP gene. An analysis of publicly available datasets showed that the knockdown of MTDH in breast and endometrial cancer cell lines induced the expression RKIP. In addition, the results obtained from qRT-PCR and ChIP analyses showed that MTDH considerably inhibited RKIP expression. In addition, the RKIP transcript levels in MTDH-knockdown or MTDH-overexpressing MCF-7 cells were likely correlated to the protein levels, suggesting that MTDH regulates RKIP expression. In conclusion, we suggest that MTDH is a novel factor that controls the RKIP transcription, which is essential for cancer progression.
Collapse
|
13
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
14
|
Dong W, Wu P, Zhou D, Huang J, Qin M, Yang X, Wan M, Zong Y. Ultrasound-Mediated Gene Therapy of Hepatocellular Carcinoma Using Pre-microRNA Plasmid-Loaded Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:90-107. [PMID: 31668943 DOI: 10.1016/j.ultrasmedbio.2019.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 05/19/2023]
Abstract
The PIK3 CA gene encodes the p110α protein subunit and is one of the most efficient cancer genes in solid and hematological tumors including hepatocellular carcinoma (HCC). There are currently ongoing therapies against tumors based on PIK3 CA inhibition. Because microRNAs (miRNAs) play an important role in post-transcriptional regulation and are also involved in the inhibition of PIK3 CA expression to suppress cancer cell proliferation, overexpression of tumor-suppressive miRNA is a promising therapeutic approach for HCC therapy. The successful and localized delivery of miRNA overexpression vectors (pre-miRNA plasmids) is very important in improving the therapeutic efficacy of this miRNA therapy strategy. In the study described here, submicron acoustic phase-shifted nanodroplets were used to efficiently deliver pre-miRNA plasmid in vitro and in vivo for HCC therapy under focused ultrasound (US) activation. Briefly, six miRNAs, inhibiting PIK3 CA and downregulated in HCC, were selected through summary and analysis of the currently existing literature data. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and cell apoptosis assay revealed that pre-miR-139, -203a, -378a and -422a plasmids among the six miRNA overexpression vectors could suppress growth of the hepatoma cell line SMMC-7721. These four pre-miRNA plasmids were then electrostatically adhered to positively charged lipid-shelled nanodroplets to obtain plasmid-loaded nanodroplets (PLNDs). The PLND-generated microbubbles oscillated and even collapsed under US exposure to release the loaded pre-miRNA plasmids and enhance their cellular uptake through consequent sonoporation, that is, formation of small pores on the cell membrane induced by the mechanical effects of PLND cavitation. Fluorescence microscopy results revealed that PLNDs could effectively deliver the aforementioned four pre-miRNA plasmids into SMMC-7721 cells in vitro under 1.2-MHz 60-cycle sinusoid US exposure with a peak negative pressure >5.5 MPa at a 40-Hz pulse repetition frequency. Plasmid delivery efficiency and cell viability positively correlated with the inertial cavitation dose that was determined mainly by peak negative pressure. Furthermore, PLNDs combined with US were evaluated in vivo to deliver these four pre-miRNAs plasmids and verify their therapeutic efficacy in subcutaneous tumor of the mouse xenograft HCC model. The results revealed that the PLNDs loaded with pre-miR-139 and -378a plasmids could effectively suppress tumor growth after US treatment. Thus, combination of pre-miRNA PLNDs with US activation seems to constitute a potential strategy for HCC therapy.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Di Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Jixiu Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Mengfan Qin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Xinxing Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China; Department of Ultrasound, First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi' an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China.
| |
Collapse
|
15
|
Wong KM, Song J, Saini V, Wong YH. Small Molecules as Drugs to Upregulate Metastasis Suppressors in Cancer Cells. Curr Med Chem 2019; 26:5876-5899. [PMID: 29788870 DOI: 10.2174/0929867325666180522090842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
It is well-recognized that the majority of cancer-related deaths is attributed to metastasis, which can arise from virtually any type of tumor. Metastasis is a complex multistep process wherein cancer cells must break away from the primary tumor, intravasate into the circulatory or lymphatic systems, extravasate, proliferate and eventually colonize secondary sites. Since these molecular processes involve the coordinated actions of numerous proteins, targeted disruptions of key players along these pathways represent possible therapeutic interventions to impede metastasis formation and reduce cancer mortality. A diverse group of proteins with demonstrated ability to inhibit metastatic colonization have been identified and they are collectively known as metastasis suppressors. Given that the metastasis suppressors are often downregulated in tumors, drug-induced re-expression or upregulation of these proteins represents a promising approach to limit metastasis. Indeed, over 40 compounds are known to exhibit efficacy in upregulating the expression of metastasis suppressors via transcriptional or post-transcriptional mechanisms, and the most promising ones are being evaluated for their translational potentials. These small molecules range from natural products to drugs in clinical use and they apparently target different molecular pathways, reflecting the diverse nature of the metastasis suppressors. In this review, we provide an overview of the different classes of compounds known to possess the ability to upregulate one or more metastasis suppressors, with an emphasis on their mechanisms of action and therapeutic potentials.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
16
|
Wang Y, Bonavida B. A New Linkage between the Tumor Suppressor RKIP and Autophagy: Targeted Therapeutics. Crit Rev Oncog 2019; 23:281-305. [PMID: 30311561 DOI: 10.1615/critrevoncog.2018027211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complexities of molecular signaling in cancer cells have been hypothesized to mediate cross-network alterations of oncogenic processes such as uncontrolled cell growth, proliferation, acquisition of epithelial-to-mesenchymal transition (EMT) markers, and resistance to cytotoxic therapies. The two biochemically exclusive processes/proteins examined in the present review are the metastasis suppressor Raf-1 kinase inhibitory protein (RKIP) and the cell-intrinsic system of macroautophagy (hereafter referred to as autophagy). RKIP is poorly expressed in human cancer tissues, and low expression levels are correlated with high incidence of tumor growth, metastasis, poor treatment efficacy, and poor prognoses in cancer patients. By comparison, autophagy is a conserved cytoprotective degradation pathway that has been shown to influence the acquisition of resistance to hypoxia and nutrient depletion as well as the regulation of chemo-immuno-resistance and apoptotic evasion. Evidently, a broad library of cancer-relevant studies exists for RKIP and autophagy, although reports of the interactions between pathways involving RKIP and autophagy have been relatively sparse. To circumvent this limitation, the coordinate regulatory and effector mechanisms were examined for both RKIP and autophagy. Here, we propose three putative pathways that demonstrate the inherent pleiotropism and relevance of RKIP and the microtubule-associated protein 1 light chain 3 (MAP1LC3, LC3) on cell growth, proliferation, senescence, and EMT, among the hallmarks of cancer. Our findings suggest that signaling modules involving p53, signal transducer and activator of transcription 3 (STAT3), nuclear factor-κB (NF-κB), and Snail highlight the novel roles for RKIP in the control of autophagy and vice versa. The suggested potential crosstalk mechanisms are new areas of research in which to further study RKIP and autophagy in cancer models. These should lead to novel prognostic motifs and will provide alternative therapeutic strategies for the treatment of unresponsive aggressive cancer types.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90025-1747
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747
| |
Collapse
|
17
|
Yesilkanal AE, Rosner MR. Targeting Raf Kinase Inhibitory Protein Regulation and Function. Cancers (Basel) 2018; 10:cancers10090306. [PMID: 30181452 PMCID: PMC6162369 DOI: 10.3390/cancers10090306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Raf Kinase Inhibitory Protein (RKIP) is a highly conserved kinase inhibitor that functions as a metastasis suppressor in a variety of cancers. Since RKIP can reprogram tumor cells to a non-metastatic state by rewiring kinase networks, elucidating the mechanism by which RKIP acts not only reveals molecular mechanisms that regulate metastasis, but also represents an opportunity to target these signaling networks therapeutically. Although RKIP is often lost during metastatic progression, the mechanism by which this occurs in tumor cells is complex and not well understood. In this review, we summarize our current understanding of RKIP regulation in tumors and consider experimental and computational strategies for recovering or mimicking its function by targeting mediators of metastasis.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Zaravinos A, Bonavida B, Chatzaki E, Baritaki S. RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers (Basel) 2018; 10:287. [PMID: 30149591 PMCID: PMC6162400 DOI: 10.3390/cancers10090287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
RAF-kinase inhibitor protein (RKIP) is a well-established tumor suppressor that is frequently downregulated in a plethora of solid and hematological malignancies. RKIP exerts antimetastatic and pro-apoptotic properties in cancer cells, via modulation of signaling pathways and gene products involved in tumor survival and spread. Here we review the contribution of RKIP in the regulation of early metastatic steps such as epithelial⁻mesenchymal transition (EMT), migration, and invasion, as well as in tumor sensitivity to conventional therapeutics and immuno-mediated cytotoxicity. We further provide updated justification for targeting RKIP as a strategy to overcome tumor chemo/immuno-resistance and suppress metastasis, through the use of agents able to modulate RKIP expression in cancer cells.
Collapse
Affiliation(s)
- Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus.
- Centre for Risk and Decision Sciences (CERIDES), Nicosia 2404, Cyprus.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Stavroula Baritaki
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete 71500, Greece.
| |
Collapse
|
19
|
Han J, Chen M, Wang Y, Gong B, Zhuang T, Liang L, Qiao H. Identification of Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma. Sci Rep 2018; 8:9912. [PMID: 29967488 PMCID: PMC6028435 DOI: 10.1038/s41598-018-28299-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing rapidly throughout the world. Hence, there is an urgent need for identifying more specific and sensitive biomarkers to explorate the pathogenesis of PTC. In this study, three pairs of stage I PTC tissues and matched normal adjacent tissues were sequenced by RNA-Seq, and 719 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses indicated that the DEGs were significantly enriched in 28 pathways. A total of 18 nodes consisting of 20 DEGs were identified in the top 10% of KEGG integrated networks. The functions of DEGs were further analysed by GO. The 13 selected genes were confirmed by qRT-PCR in 16 stage I PTC patients and by The Cancer Genome Atlas (TCGA) database. The relationship interactions between DEGs were analysed by protein-protein interaction networks and chromosome localizations. Finally, four newly discovered genes, COMP, COL3A1, ZAP70, and CD247, were found to be related with PTC clinical phenotypes, and were confirmed by Spearman’s correlation analyses in TCGA database. These four DEGs might be promising biomarkers for early-stage PTC, and provide an experimental foundation for further exploration of the pathogenesis of early-stage PTC.
Collapse
Affiliation(s)
- Jun Han
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Meijun Chen
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Boxuan Gong
- Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Tianwei Zhuang
- Department of Endoerinology and Metabolism, Mu danjiang Medical University Affiliated Hongqi Hospital, Mu danjiang, 157000, China
| | - Lingyu Liang
- Internal medicine, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Hong Qiao
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
20
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|