1
|
Wanderi K, Cui Z. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. EXPLORATION (BEIJING, CHINA) 2022; 2:20210097. [PMID: 37323884 PMCID: PMC10191020 DOI: 10.1002/exp.20210097] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Illumination of biological events with near-infrared II sub-channel (NIR-IIb, 1500-1700 nm) enhances the transparency of biological tissues, which is very attractive for deep imaging. Due to the long-wavelength, which reduces optical damage, suppresses autofluorescence, and obviates light scattering, NIR-IIb nanoprobes afford deep tissue penetration with unprecedented spatiotemporal resolution. Hence, NIR-IIb imaging facilitates deep learning and decipherment of biological proceedings in living organisms with astounding high clarity. In comparison to its predecessors in the visible-near-infrared spectrum, imaging in the NIR-IIb has shown great potential for tissue imaging and extrapolating imaging applications for clinical studies. However, the use of organic fluorescent nanoprobes (OFNPs) in the NIR-IIb region is still rare since it is in its early stages. Thus, herein we aim to survey the recent development of different organic fluorescent nanomaterials with NIR-IIb characteristics, their unique photophysical properties, and their utilization in deep imaging in animal models. Further, practical researches on organic fluorescent nanoprobes with NIR-IIb emission and their transition to clinical applications are highlighted.
Collapse
Affiliation(s)
- Kevin Wanderi
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
- Department of Analytical Microbiology and NanobiologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| |
Collapse
|
2
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Collot M. Recent advances in dioxaborine-based fluorescent materials for bioimaging applications. MATERIALS HORIZONS 2021; 8:501-514. [PMID: 34821266 DOI: 10.1039/d0mh01186j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent materials are continuously contributing to important advances in the field of bioimaging. Among these materials, dioxaborine-based fluorescent materials (DBFM) are arousing growing interest. Due to their rigid structures conferred by a cyclic boron complex, DBFM possess appealing photophysical properties including high extinction coefficients and quantum yields as well as emission in the near infrared, enhanced photostability and high two-photon absorption. We herein discuss the recent advances of DBFM that found use in bioimaging applications. This review covers the development of fluorescent molecular probes for biomolecules (DNA, proteins), small molecules (cysteine, H2O2, oxygen), ions and the environment (polarity, viscosity) as well as polymers and nanomaterials used in bioimaging. This review aims at providing a comprehensive and critical insight on DBFM by highlighting the assets of these promising materials in bioimaging but also by pointing out their limitations that would require further developments.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| |
Collapse
|
4
|
Araújo M, Bidarra SJ, Alves PM, Valcarcel J, Vázquez JA, Barrias CC. Coumarin-grafted blue-emitting fluorescent alginate as a potentially valuable tool for biomedical applications. J Mater Chem B 2020; 8:813-825. [DOI: 10.1039/c9tb01402k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel blue-emitting fluorescent alginate derivative has been successfully synthesized in a simple two-reaction step protocol. The developed material showed to be biocompatible and traceable upon long periods of incubation in physiologic conditions.
Collapse
Affiliation(s)
- Marco Araújo
- i3S – Instituto de Inovação e Investigação em Saúde
- Rua Alfredo Allen
- 4200-135 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Sílvia J. Bidarra
- i3S – Instituto de Inovação e Investigação em Saúde
- Rua Alfredo Allen
- 4200-135 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Pedro M. Alves
- i3S – Instituto de Inovação e Investigação em Saúde
- Rua Alfredo Allen
- 4200-135 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Jesús Valcarcel
- Group of Recycling and Valorisation of Waste Materials (REVAL)
- Marine Research Institute (IIM-CSIC)
- Vigo
- Spain
| | - José A. Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL)
- Marine Research Institute (IIM-CSIC)
- Vigo
- Spain
| | - Cristina C. Barrias
- i3S – Instituto de Inovação e Investigação em Saúde
- Rua Alfredo Allen
- 4200-135 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| |
Collapse
|
5
|
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Med Exp 2019; 7:41. [PMID: 31346794 PMCID: PMC6658643 DOI: 10.1186/s40635-019-0235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are undergoing intensive translational research for several debilitating conditions, including critical illnesses such as ARDS and sepsis. MSCs exert diverse biologic effects via their interaction with host tissues, via mechanisms that require the MSC to be in close proximity to the area of injury. Fully harnessing the therapeutic potential of advanced medicinal therapeutic products such as MSCs and their successful translation to clinical use requires a detailed understanding of MSC distribution and persistence in the injured tissues. Key aspects include understanding MSC distribution within the body, the response of the host to MSC administration, and the ultimate fate of exogenously administered MSCs within the host. Factors affecting this interaction include the MSC tissue source, the in vitro MSC culture conditions, the route of MSC administration and the specific issues relating to the target disease state, each of which remains to be fully characterised. Understanding these factors may generate strategies to modify MSC distribution and fate that may enhance their therapeutic effect. This review will examine our understanding of the mechanisms of action of MSCs, the early and late phase distribution kinetics of MSCs following in vivo administration, the ultimate fate of MSCs following administration and the potential importance of these MSC properties to their therapeutic effects. We will critique current cellular imaging and tracking methodologies used to track exogenous MSCs and their suitability for use in patients, discuss the insights they provide into the distribution and fate of MSCs after administration, and suggest strategies by which MSC biodistribution and fate may be modulated for therapeutic effect and clinical use. In conclusion, a better understanding of patterns of biodistribution and of the fate of MSCs will add important additional safety data regarding MSCs, address regulatory requirements, and may uncover strategies to increase the distribution and/or persistence of MSC at the sites of injury, potentially increasing their therapeutic potential for multiple disorders.
Collapse
Affiliation(s)
- Claire H Masterson
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland Education and Research Centre Smurfit Building, Beaumont Hospital, Dublin, 9, Ireland
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland. .,School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA Hospital Group, Galway, Ireland.
| |
Collapse
|
6
|
Abstract
Despite our understanding that the microvasculature plays a multifaceted role in the development and progression of various conditions, we know little about the extent of this involvement. A need exists for non-invasive, clinically meaningful imaging modalities capable of elucidating microvascular information to aid in our understanding of disease, and to aid in the diagnosis/monitoring of disease for more patient-specific care. In this review article, a number of imaging techniques are summarized that have been utilized to investigate the microvasculature of skin, along with their advantages, disadvantages and future perspectives in preclinical and clinical settings. These techniques include dermoscopy, capillaroscopy, Doppler sonography, laser Doppler flowmetry (LDF) and perfusion imaging, laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), including its Doppler and dynamic variant and the more recently developed OCT angiography (OCTA), photoacoustic imaging, and spatial frequency domain imaging (SFDI). Attention is largely, but not exclusively, placed on optical imaging modalities that use intrinsic optical signals to contrast the microvasculature. We conclude that whilst each imaging modality has been successful in filling a particular niche, there is no one, all-encompassing modality without inherent flaws. Therefore, the future of cutaneous microvascular imaging may lie in utilizing a multi-modal approach that will counter the disadvantages of individual systems to synergistically augment our imaging capabilities.
Collapse
Affiliation(s)
- Anthony J Deegan
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE., Seattle, WA 98195, United States of America
| | | |
Collapse
|
7
|
Zhang Z, Yuan Y, Liu Z, Chen H, Chen D, Fang X, Zheng J, Qin W, Wu C. Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26928-26935. [PMID: 30033725 DOI: 10.1021/acsami.8b08735] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo visualization of cell migration and engraftment in small animals provide crucial information in biomedical studies. Semiconducting polymer dots (Pdots) are emerging as superior probes for biological imaging. However, in vivo whole-body fluorescence imaging is largely constrained by the limited brightness of Pdots in near-infrared (NIR) region. Here, we describe the brightness enhancement of NIR fluorescent Pdots for in vivo whole-body cell tracking in deep organs. We first synthesize semiconducting polymers with strong absorption in orange and far-red regions. By molecular doping, the weak broad-band fluorescence of the Pdots was significantly narrowed and enhanced by 1 order of magnitude enhancement, yielding bright narrow-band NIR emission with a quantum yield of ∼0.21. Under an excitation of far-red light (676 nm), a trace amount of Pdots (∼2 μg) in the stomach can be clearly detected in whole-body fluorescence imaging of live mice. The Pdots coated with a cell-penetrating peptide are able to brightly label cancer cells with minimal cytotoxicity. In vivo cell tracking in live mice indicated that the entrapment and migration of the tail-vein-administered cells (∼400 000) were clearly visualized in real time. These Pdots with deep-red excitation and bright NIR emission are promising for in vivo whole-body fluorescence imaging.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Zhihe Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Haobin Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Dandan Chen
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Xiaofeng Fang
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jie Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Weiping Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Changfeng Wu
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
8
|
An Y, Kang Y, Lee J, Ahn C, Kwon K, Choi C. Blood flow characteristics of diabetic patients with complications detected by optical measurement. Biomed Eng Online 2018; 17:25. [PMID: 29466988 PMCID: PMC5822764 DOI: 10.1186/s12938-018-0457-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background Diabetes mellitus (DM) is one of the most common diseases worldwide. Uncontrolled and prolonged hyperglycemia can cause diabetic complications, which reduce the quality of life of patients. Diabetic complications are common in DM patients. Because it is impossible to completely recover from diabetic complications, it is important for early detection. In this study, we suggest a novel method of determining blood flow characteristics based on fluorescence image analysis with indocyanine green and report that diabetic complications have unique blood flow characteristics. Methods We analyzed time-series fluorescence images obtained from controls, DM patients, and DM patients with complications. The images were segmented into the digits and the dorsum of the feet and hands, and each part has been considered as arterial and capillary flow. We compared the blood flow parameters in each region among the three groups. Results The DM patients with complications showed similar blood flow parameters to the controls, except the area under the curve and the maximum intensity, which indicate the blood flow volume. These parameters were significantly decreased in DM patients with complications. Although some blood flow parameters in the feet of DM patients with complications were close to normal blood flow, the vascular response of the macrovessels and microvessels to stimulation of the hands was significantly reduced, which indicates less reactivity in DM patients with complications. Conclusions Our results suggest that DM patients, and DM patients with complications, have unique peripheral blood flow characteristics.
Collapse
Affiliation(s)
- Yuri An
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Yujung Kang
- R&D Center, Vieworks Co., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Jungsul Lee
- Cellex Life Sciences, Inc, Daejeon, Republic of Korea
| | - Chulwoo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kihwan Kwon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea. .,Cellex Life Sciences, Inc, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
10
|
Liang J, Dong X, Wei C, Ma G, Liu T, Kong D, Lv F. A visible and controllable porphyrin-poly(ethylene glycol)/α-cyclodextrin hydrogel nanocomposites system for photo response. Carbohydr Polym 2017; 175:440-449. [PMID: 28917887 DOI: 10.1016/j.carbpol.2017.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 02/08/2023]
|
11
|
Dong X, Chen H, Qin J, Wei C, Liang J, Liu T, Kong D, Lv F. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo. Drug Deliv 2017; 24:641-650. [PMID: 28282993 PMCID: PMC8241078 DOI: 10.1080/10717544.2017.1289570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Visualization of a drug delivery system could reveal the pharmacokinetic properties, which is essential for the design of a novel drug delivery system. In vivo optical imaging offers an advanced tool to monitor the drug release process and the therapeutic effect by the combination of fluorescence imaging and bioluminescence imaging. Multispectral fluorescence imaging can separate the drug and the carrier without interference. Herein, a dual fluorescent anti-tumor drug delivery system was monitored with the doxorubicin-loaded hydrogel to further explore the application of the porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer as a drug carrier, based on the beneficial fluorescence and good biocompatibility of the porphyrin incorporated hydrogel. Using nude mice bearing luciferase expressed hepatic tumor as models, the whole process from the drug delivery to the tumor therapeutic effects were real time visualized simultaneously after administration at interval from 0 to 18 d. The imaging results suggest that the fluorescence signals of the drug and the carrier can be separated and unmixed from the drug-loaded hydrogel successfully, avoiding the interference of the fluorescence signals. The tumor growth or inhibition can be real time tracked and analyzed quantitatively by bioluminescence imaging. Noninvasive continuous tracking the in vivo drug delivery process simultaneously is a potential trend for the precise drug delivery and treatment.
Collapse
Affiliation(s)
- Xia Dong
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| | - Hongli Chen
- b School of Life Science and Technology, Xinxiang Medical University , Xinxiang , Henan , PR China
| | - Jingwen Qin
- b School of Life Science and Technology, Xinxiang Medical University , Xinxiang , Henan , PR China
| | - Chang Wei
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| | - Jie Liang
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| | - Tianjun Liu
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| | - Deling Kong
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| | - Feng Lv
- a Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin , PR China and
| |
Collapse
|
12
|
Liang J, Dong X, Wei C, Kong D, Liu T, Lv F. Phthalocyanine incorporated alginate hydrogel with near infrared fluorescence for non-invasive imaging monitoring in vivo. RSC Adv 2017. [DOI: 10.1039/c6ra27756j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A phthalocyanine incorporated alginate hydrogel with rhodamine was monitored by fluorescence imaging as a dual fluorescent drug delivery system.
Collapse
Affiliation(s)
- Jie Liang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Chang Wei
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Deling Kong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- PR China
| |
Collapse
|
13
|
Advances in development of fluorescent probes for detecting amyloid-β aggregates. Acta Pharmacol Sin 2016; 37:719-30. [PMID: 26997567 DOI: 10.1038/aps.2015.155] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/25/2015] [Indexed: 12/17/2022]
Abstract
With accumulating evidence suggesting that amyloid-β (Aβ) deposition is a good diagnostic biomarker for Alzheimer's disease (AD), the discovery of active Aβ probes has become an active area of research. Among the existing imaging methods, optical imaging targeting Aβ aggregates (fibrils or oligomers), especially using near-infrared (NIR) fluorescent probes, is increasingly recognized as a promising approach for the early diagnosis of AD due to its real time detection, low cost, lack of radioactive exposure and high-resolution. In the past decade, a variety of fluorescent probes have been developed and tested for efficiency in vitro, and several probes have shown efficacy in AD transgenic mice. This review classifies these representative probes based on their chemical structures and functional modes (dominant solvent-dependent mode and a novel solvent-independent mode). Moreover, the pharmaceutical characteristics of these representative probes are summarized and discussed. This review provides important perspectives for the future development of novel NIR Aβ diagnostic probes.
Collapse
|
14
|
Dong X, Wei C, Liu T, Lv F, Qian Z. Real-Time Fluorescence Tracking of Protoporphyrin Incorporated Thermosensitive Hydrogel and Its Drug Release in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5104-13. [PMID: 26848506 DOI: 10.1021/acsami.5b11493] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Chang Wei
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People’s Republic of China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy/Collaborative Innovation
Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
15
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|