1
|
Panitsina VA, Bodrov SY, Boulygina ES, Slobodova NV, Kosintsev PA, Abramson NI. In Search of the Elusive North: Evolutionary History of the Arctic Fox ( Vulpes lagopus) in the Palearctic from the Late Pleistocene to the Recent Inferred from Mitogenomic Data. BIOLOGY 2023; 12:1517. [PMID: 38132343 PMCID: PMC10740874 DOI: 10.3390/biology12121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Despite the high level of interest, the population history of arctic foxes during the Late Pleistocene and Holocene remains poorly understood. Here we aimed to fill gaps in the demographic and colonization history of the arctic fox by analyzing new ancient DNA data from fossil specimens aged from 50 to 1 thousand years from the Northern and Polar Urals, historic DNA from museum specimens from the Novaya Zemlya Archipelago and the Taymyr Peninsula and supplementing these data by previously published sequences of recent and extinct arctic foxes from other regions. This dataset was used for reconstruction of a time-calibrated phylogeny and a temporal haplotype network covering four time intervals: Late Pleistocene (ranging from 30 to 13 thousand years bp), Holocene (ranging from 4 to 1 thousand years bp), historical (approximately 150 years), and modern. Our results revealed that Late Pleistocene specimens showed no genetic similarity to either modern or historical specimens, thus supporting the earlier hypothesis on local extinction rather than habitat tracking.
Collapse
Affiliation(s)
- Valentina A. Panitsina
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| | - Semyon Yu. Bodrov
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| | | | | | - Pavel A. Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 620144 Yekaterinburg, Russia
| | - Natalia I. Abramson
- Zoological Institute, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.A.P.); (S.Y.B.)
| |
Collapse
|
2
|
Wolverines (Gulo gulo) in the Arctic: Revisiting distribution and identifying research and conservation priorities amid rapid environmental change. Polar Biol 2022; 45:1465-1482. [PMID: 36090964 PMCID: PMC9440465 DOI: 10.1007/s00300-022-03079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Wolverines (Gulo gulo) occupy most of the globe’s Arctic tundra. Given the rapidly warming climate and expanding human activity in this biome, understanding wolverine ecology, and therefore the species’ vulnerability to such changes, is increasingly important for developing research priorities and effective management strategies. Here, we review and synthesize knowledge of wolverines in the Arctic using both Western science sources and available Indigenous Knowledge (IK) to improve our understanding of wolverine ecology in the Arctic and better predict the species’ susceptibility to change. To accomplish this, we update the pan-Arctic distribution map of wolverines to account for recent observations and then discuss resulting inference and uncertainties. We use these patterns to contextualize and discuss potential underlying drivers of distribution and population dynamics, drawing upon knowledge of food habits, habitat associations, and harvest, as well as studies of wolverine ecology elsewhere. We then identify four broad areas to prioritize conservation and research efforts: (1) Monitoring trends in population abundance, demographics, and distribution and the drivers thereof, (2) Evaluating and predicting wolverines’ responses to ongoing climate change, particularly the consequences of reduced snow and sea ice, and shifts in prey availability, (3) Understanding wolverines’ response to human development, including the possible impact of wintertime over-snow travel and seismic testing to reproductive denning, as well as vulnerability to hunting and trapping associated with increased human access, and (4) Ensuring that current and future harvest are sustainable.
Collapse
|
3
|
Stojak J, Jędrzejewska B. Extinction and replacement events shaped the historical biogeography of Arctic mammals in Europe: new models of species response. Mamm Rev 2022. [DOI: 10.1111/mam.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joanna Stojak
- Mammal Research Institute, Polish Academy of Sciences ul. Stoczek 1, 17‐230 Białowieża Poland
- Department of Ecology and Evolutionary Biology, Paleogenomics Laboratory University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Bogumiła Jędrzejewska
- Mammal Research Institute, Polish Academy of Sciences ul. Stoczek 1, 17‐230 Białowieża Poland
| |
Collapse
|
4
|
Wolverines (Gulo gulo) in a changing landscape and warming climate: A decadal synthesis of global conservation ecology research. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Krejsa DM, Talbot SL, Sage GK, Sonsthagen SA, Jung TS, Magoun AJ, Cook JA. Dynamic landscapes in northwestern North America structured populations of wolverines (Gulo gulo). J Mammal 2021. [DOI: 10.1093/jmammal/gyab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Cyclic climatic and glacial fluctuations of the Late Quaternary produced a dynamic biogeographic history for high latitudes. To refine our understanding of this history in northwestern North America, we explored geographic structure in a wide-ranging carnivore, the wolverine (Gulo gulo). We examined genetic variation in populations across mainland Alaska, coastal Southeast Alaska, and mainland western Canada using nuclear microsatellite genotypes and sequence data from the mitochondrial DNA (mtDNA) control region and Cytochrome b (Cytb) gene. Data from maternally inherited mtDNA reflect stable populations in Northwest Alaska, suggesting the region harbored wolverine populations since at least the Last Glacial Maximum (LGM; 21 Kya), consistent with their persistence in the fossil record of Beringia. Populations in Southeast Alaska are characterized by minimal divergence, with no genetic signature of long-term refugial persistence (consistent with the lack of pre-Holocene fossil records there). The Kenai Peninsula population exhibits mixed signatures depending on marker type: mtDNA data indicate stability (i.e., historical persistence) and include a private haplotype, whereas biparentally inherited microsatellites exhibit relatively low variation and a lack of private alleles consistent with a more recent Holocene colonization of the peninsula. Our genetic work is largely consistent with the early 20th century taxonomic hypothesis that wolverines on the Kenai Peninsula belong to a distinct subspecies. Our finding of significant genetic differentiation of wolverines inhabiting the Kenai Peninsula, coupled with the peninsula’s burgeoning human population and the wolverine’s known sensitivity to anthropogenic impacts, provides valuable foundational data that can be used to inform conservation and management prescriptions for wolverines inhabiting these landscapes.
Collapse
Affiliation(s)
- Dianna M Krejsa
- Department of Biology and Angelo State Natural History Collections, Angelo State University, ASU Station 10890, San Angelo, TX 76909-0890, USA
| | - Sandra L Talbot
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - George K Sage
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | | | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Y1A 2C6, Canada
| | - Audrey J Magoun
- Wildlife Research and Management, 3680 Non Road, Fairbanks, AK 99709, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Colella JP, Frederick LM, Talbot SL, Cook JA. Extrinsically reinforced hybrid speciation within Holarctic ermine (
Mustela
spp.) produces an insular endemic. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jocelyn P. Colella
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
- Biodiversity Institute University of Kansas Lawrence KS USA
| | - Lindsey M. Frederick
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
- New Mexico Museum of Natural History and Science Albuquerque NM USA
| | | | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque NM USA
| |
Collapse
|
7
|
Assessing biodiversity hotspots below the species-level in Canada using designatable units. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Hessels EW, Lofroth EC, Weir RD, Gorrell JC. Characterizing the elusive Vancouver Island wolverine, Gulo gulo vancouverensis, using historical DNA. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The wolverine (Gulo gulo) is a Holarctic species found in North America primarily across the boreal forest, the subarctic, and along the Pacific coast, including Vancouver Island (VI), British Columbia. While wolverines on VI are rare and possibly extirpated, they have been previously described as a unique subspecies, G. g. vancouverensis, distinct from G. g. luscus from the mainland of North America. However, the validity of the VI subspecies is contentious, with conflicting results from studies of skull morphology. Here, we used molecular analyses to characterize the genetic diversity of the VI population and resolve this taxonomic debate to assist with conservation priorities. Historical DNA of VI wolverines was obtained from museum specimens, amplified at 16 nuclear microsatellite loci, and sequenced at the mitochondrial D-loop control region to compare with wolverines from mainland British Columbia. The VI population had lower allelic richness and was fixed for a single common mtDNA haplotype. Bayesian and non-Bayesian assignments using microsatellites generally revealed admixture across populations, implying allele frequencies between the VI and mainland populations were not significantly different. Hence, both types of genetic markers showed little evolutionary divergence between VI and the mainland population. Combined, these results do not provide evidence of significant genetic distinction for VI wolverines, nor support the subspecific classification. Immediate conservation efforts should focus on estimating population size, while future conservation planning can assume VI wolverines likely are not a unique genetic population and there remains the potential for natural recolonization of wolverines to VI.
Collapse
Affiliation(s)
- Evan W Hessels
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada
| | | | - Richard D Weir
- Ministry of Environment, Government of British Columbia, Victoria, BC, Canada
| | | |
Collapse
|
9
|
Jacquier M, Vandel JM, Léger F, Duhayer J, Pardonnet S, Queney G, Kaerle C, Say L, Ruette S, Devillard S. Population genetic structures at multiple spatial scales: importance of social groups in European badgers. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractPopulation viability and metapopulation dynamics are strongly affected by gene flow. Identifying ecological correlates of genetic structure and gene flow in wild populations is therefore a major issue both in evolutionary ecology and species management. Studying the genetic structure of populations also enables identification of the spatial scale at which most gene flow occurs, hence the scale of the functional connectivity, which is of paramount importance for species ecology. In this study, we examined the genetic structure of a social, continuously distributed mammal, the European badger (Meles meles), both at large spatial scales (among populations) and fine (within populations) spatial scales. The study was carried out in 11 sites across France utilizing a noninvasive hair trapping protocol at 206 monitored setts. We identified 264 badgers genotyped at 24 microsatellite DNA loci. At the large scale, we observed high and significant genetic differentiation among populations (global Fst = 0.139; range of pairwise Fst [0.046–0.231]) that was not related to the geographic distance among sites, suggesting few large-scale dispersal events. Within populations, we detected a threshold value below which badgers were genetically close (< 400 m), highlighting that sociality is the major structuring process within badger populations at the fine scale.
Collapse
Affiliation(s)
- Mickaël Jacquier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Jean-Michel Vandel
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - François Léger
- Office Français de la Biodiversité, Unité-PAD, Gerstheim, France
| | - Jeanne Duhayer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sylvia Pardonnet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | | | | | - Ludovic Say
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sandrine Ruette
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Sébastien Devillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| |
Collapse
|
10
|
Wolf JF, Kriss KD, MacAulay KM, Shafer ABA. Panmictic population genetic structure of northern British Columbia mountain goats (Oreamnos americanus) has implications for harvest management. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Lansink GMJ, Esparza-Salas R, Joensuu M, Koskela A, Bujnáková D, Kleven O, Flagstad Ø, Ollila T, Kojola I, Aspi J, Kvist L. Population genetics of the wolverine in Finland: the road to recovery? CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01264-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractAfter decades, even centuries of persecution, large carnivore populations are widely recovering in Europe. Considering the recent recovery of the wolverine (Gulo gulo) in Finland, our aim was to evaluate genetic variation using 14 microsatellites and mtDNA control region (579 bp) in order (1) to determine whether the species is represented by a single genetic population within Finland, (2) to quantify the genetic diversity, and (3) to estimate the effective population size. We found two major genetic clusters divided between eastern and northern Finland based on microsatellites (FST = 0.100) but also a significant pattern of isolation by distance. Wolverines in western Finland had a genetic signature similar to the northern cluster, which can be explained by former translocations of wolverines from northern to western Finland. For both main clusters, most estimates of the effective population size Ne were below 50. Nevertheless, the genetic diversity was higher in the eastern cluster (HE = 0.57, AR = 4.0, AP = 0.3) than in the northern cluster (HE = 0.49, AR = 3.7, AP = 0.1). Migration between the clusters was low. Two mtDNA haplotypes were found: one common and identical to Scandinavian wolverines; the other rare and not previously detected. The rare haplotype was more prominent in the eastern genetic cluster. Combining all available data, we infer that the genetic population structure within Finland is shaped by a recent bottleneck, isolation by distance, human-aided translocations and postglacial recolonization routes.
Collapse
|
12
|
Wang SN, Zhai JC, Liu WS, Xia YL, Han L, Li HP. Origins of Chinese reindeer (Rangifer tarandus) based on mitochondrial DNA analyses. PLoS One 2019; 14:e0225037. [PMID: 31721804 PMCID: PMC6853604 DOI: 10.1371/journal.pone.0225037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022] Open
Abstract
The most southern population of reindeer (Rangifer tarandus) inhabits northeastern China, but the migration route and origin of this population have not been confirmed. The sequences of mitochondrial DNA control regions from domestic and wild herds from Eurasia and China were analysed. The results showed that the Chinese reindeer population originated independently from north-central Russian domestic herds, belonging to a large reindeer population that was present across Beringia during the last glacial period. Some studies have reported that the Chinese reindeer population is closely related to wild forest reindeer herds in Russia. Our results, however, indicate that wild forest reindeer herds of southeastern Russia contributed little or nothing to the Chinese reindeer herd gene pool. Chinese reindeer herds have a much greater genetic similarity to more northerly distributed tundra-type herds that inhabit open areas. The present findings will be essential for future conservation planning for Chinese reindeer.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Jian-Cheng Zhai
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Wei-Shi Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Yan-Ling Xia
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - He-Ping Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| |
Collapse
|
13
|
Ekblom R, Brechlin B, Persson J, Smeds L, Johansson M, Magnusson J, Flagstad Ø, Ellegren H. Genome sequencing and conservation genomics in the Scandinavian wolverine population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:1301-1312. [PMID: 29935028 DOI: 10.1111/cobi.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Genetic approaches have proved valuable to the study and conservation of endangered populations, especially for monitoring programs, and there is potential for further developments in this direction by extending analyses to the genomic level. We assembled the genome of the wolverine (Gulo gulo), a mustelid that in Scandinavia has recently recovered from a significant population decline, and obtained a 2.42 Gb draft sequence representing >85% of the genome and including >21,000 protein-coding genes. We then performed whole-genome resequencing of 10 Scandinavian wolverines for population genomic and demographic analyses. Genetic diversity was among the lowest detected in a red-listed population (mean genome-wide nucleotide diversity of 0.05%). Results of the demographic analyses indicated a long-term decline of the effective population size (Ne ) from 10,000 well before the last glaciation to <500 after this period. Current Ne appeared even lower. The genome-wide FIS level was 0.089 (possibly signaling inbreeding), but this effect was not observed when analyzing a set of highly variable SNP markers, illustrating that such markers can give a biased picture of the overall character of genetic diversity. We found significant population structure, which has implications for population connectivity and conservation. We used an integrated microfluidic circuit chip technology to develop an SNP-array consisting of 96 highly informative markers that, together with a multiplex pre-amplification step, was successfully applied to low-quality DNA from scat samples. Our findings will inform management, conservation, and genetic monitoring of wolverines and serve as a genomic roadmap that can be applied to other endangered species. The approach used here can be generally utilized in other systems, but we acknowledge the trade-off between investing in genomic resources and direct conservation actions.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Birte Brechlin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jens Persson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden
| | - Linnéa Smeds
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Malin Johansson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Jessica Magnusson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Samuels JX, Bredehoeft KE, Wallace SC. A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines. PeerJ 2018; 6:e4648. [PMID: 29682423 PMCID: PMC5910791 DOI: 10.7717/peerj.4648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/30/2018] [Indexed: 11/26/2022] Open
Abstract
The wolverine (Gulo gulo) is the largest living terrestrial member of the Mustelidae; a versatile predator formerly distributed throughout boreal regions of North America and Eurasia. Though commonly recovered from Pleistocene sites across their range, pre-Pleistocene records of the genus are exceedingly rare. Here, we describe a new species of Gulo from the Gray Fossil Site in Tennessee. Based on biostratigraphy, a revised estimate of the age of the Gray Fossil Site is Early Pliocene, near the Hemphillian—Blancan transition, between 4.9 and 4.5 Ma. This represents the earliest known occurrence of a wolverine, more than one million years earlier than any other record. The new species of wolverine described here shares similarities with previously described species of Gulo, and with early fishers (Pekania). As the earliest records of both Gulo and Pekania are known from North America, this suggests the genus may have evolved in North America and dispersed to Eurasia later in the Pliocene. Both fauna and flora at the Gray Fossil Site are characteristic of warm/humid climates, which suggests wolverines may have become ‘cold-adapted’ relatively recently. Finally, detailed comparison indicates Plesiogulo, which has often been suggested to be ancestral to Gulo, is not likely closely related to gulonines, and instead may represent convergence on a similar niche.
Collapse
Affiliation(s)
- Joshua X Samuels
- Department of Geosciences, East Tennessee State University, Johnson City, TN, United States of America.,Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| | - Keila E Bredehoeft
- Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| | - Steven C Wallace
- Department of Geosciences, East Tennessee State University, Johnson City, TN, United States of America.,Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
15
|
Jenkins DA, Yannic G, Schaefer JA, Conolly J, Lecomte N. Population structure of caribou in an ice-bound archipelago. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Deborah. A. Jenkins
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| | - Glenn Yannic
- University of Grenoble Alpes; University of Savoie Mont Blanc; CNRS; LECA (Laboratoire d'Ecologie Alpine); Le Bourget-du-Lac France
| | | | - James Conolly
- Department of Anthropology; Trent University; Peterborough ON Canada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| |
Collapse
|
16
|
Kvie KS, Heggenes J, Anderson DG, Kholodova MV, Sipko T, Mizin I, Røed KH. Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic Reindeer (Rangifer tarandus). PLoS One 2016; 11:e0165237. [PMID: 27880778 PMCID: PMC5120779 DOI: 10.1371/journal.pone.0165237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
In light of current debates on global climate change it has become important to know more on how large, roaming species have responded to environmental change in the past. Using the highly variable mitochondrial control region, we revisit theories of Rangifer colonization and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maximum. Comparing mtDNA control region sequences from the three Arctic archipelagos showed a strong genetic connection between the populations, supporting a common origin in the past. A genetic connection between the three archipelagos and two Russian mainland populations was also found, suggesting colonization of the Eurasian high Arctic archipelagos from the Eurasian mainland. The age of the Franz Josef Land material (>2000 years before present) implies that Arctic indigenous reindeer colonized the Eurasian Arctic archipelagos through natural dispersal, before humans approached this region.
Collapse
Affiliation(s)
- Kjersti S Kvie
- Department of Environmental Studies, University College of Southeast Norway, Bø in Telemark, Norway.,Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jan Heggenes
- Department of Environmental Studies, University College of Southeast Norway, Bø in Telemark, Norway
| | - David G Anderson
- Department of Anthropology, University of Aberdeen, Aberdeen, Scotland
| | | | - Taras Sipko
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Ivan Mizin
- Russian Arctic National Park, Arkhangelsk, Russia
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
17
|
Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L, Czarnomska SD, Leonard JA, Randi E, Nowak C, Åkesson M, López-Bao JV, Álvares F, Llaneza L, Echegaray J, Vilà C, Ozolins J, Rungis D, Aspi J, Paule L, Skrbinšek T, Saarma U. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 2016; 92:1601-1629. [PMID: 27682639 DOI: 10.1111/brv.12298] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023]
Abstract
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.
Collapse
Affiliation(s)
- Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaanus Remm
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Malgorzata Pilot
- School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL, Lincoln, UK
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
| | - Laima Baltrūnaité
- Laboratory of Mammalian Biology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Sylwia D Czarnomska
- Mammal Research Institute Polish Academy of Sciences, Waszkiewicza 1, 17-230, Białowieża, Poland
| | - Jennifer A Leonard
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Ettore Randi
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Mikael Åkesson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| | | | - Francisco Álvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- ARENA Asesores en Recursos Naturales S.L. c/Perpetuo Socorro, n° 12 Entlo 2B, 27003, Lugo, Spain
| | - Jorge Echegaray
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Carles Vilà
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Janis Ozolins
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Dainis Rungis
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Ladislav Paule
- Department of Phytology, Faculty of Forestry, Technical University, T.G. Masaryk str. 24, SK-96053, Zvolen, Slovakia
| | - Tomaž Skrbinšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
18
|
Malyarchuk BA, Derenko MV, Denisova GA. Mitochondrial genome variability in the wolverine (Gulo gulo). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415090069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Perktaş U, Gür H, Ada E. Historical demography of the Eurasian green woodpecker: integrating phylogeography and ecological niche modelling to test glacial refugia hypothesis. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a9.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Utku Perktaş
- Department of Biology (Zoology Section), Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, 10024 New York, NY, U.S.A
| | - Hakan Gür
- Department of Biology, Faculty of Arts and Sciences, Ahi Evran University, Bağbaşı, 40100 Kırşehir, Turkey
| | - Eren Ada
- Department of Biology (Zoology Section), Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
20
|
Prentice MB, Bowman J, Wilson PJ. A test of somatic mosaicism in the androgen receptor gene of Canada lynx (Lynx canadensis). BMC Genet 2015; 16:125. [PMID: 26503624 PMCID: PMC4623281 DOI: 10.1186/s12863-015-0284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022] Open
Abstract
Background The androgen receptor, an X-linked gene, has been widely studied in human populations because it contains highly polymorphic trinucleotide repeat motifs that have been associated with a number of adverse human health and behavioral effects. A previous study on the androgen receptor gene in carnivores reported somatic mosaicism in the tissues of a number of species including Eurasian lynx (Lynx lynx). We investigated this claim in a closely related species, Canada lynx (Lynx canadensis). The presence of somatic mosaicism in lynx tissues could have implications for the future study of exonic trinucleotide repeats in landscape genomic studies, in which the accurate reporting of genotypes would be highly problematic. Methods To determine whether mosaicism occurs in Canada lynx, two lynx individuals were sampled for a variety of tissue types (lynx 1) and tissue locations (lynx 1 and 2), and 1,672 individuals of known sex were genotyped to further rule out mosaicism. Results We found no evidence of mosaicism in tissues from the two necropsied individuals, or any of our genotyped samples. Conclusions Our results indicate that mosaicism does not manifest in Canada lynx. Therefore, the use of hide samples for further work involving trinucleotide repeat polymorphisms in Canada lynx is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0284-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie B Prentice
- Department of Environmental & Life Sciences, Trent University, 1600 West Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| | - Paul J Wilson
- Biology Department, Trent University, 1600 West Bank Drive, Peterborough, K9J 7B8, ON, Canada.
| |
Collapse
|
21
|
Lack of Spatial Immunogenetic Structure among Wolverine (Gulo gulo) Populations Suggestive of Broad Scale Balancing Selection. PLoS One 2015; 10:e0140170. [PMID: 26448462 PMCID: PMC4598017 DOI: 10.1371/journal.pone.0140170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.
Collapse
|