1
|
Belem-Filho IJA, Godoy ACV, Busnardo C, Frias AT, Zangrossi H, Del Bianco Borges B, Herval ACF, Correa FMA, Crestani CC, Alves FHF. Role of endocannabinoid neurotransmission in the insular cortex on cardiovascular, autonomic and behavioral responses evoked by acute restraint stress in rats. Neuropharmacology 2025; 271:110404. [PMID: 40049238 DOI: 10.1016/j.neuropharm.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study aimed to investigate the role of endocannabinoid mechanisms present within the insular cortex (IC) on cardiovascular, autonomic and anxiogenic-like responses evoked by an acute session of restraint in rats. For this, bilateral guide cannulas directed to the IC were implanted in male Wistar rats for intrabrain microinjection of the selective CB1 receptor antagonist AM251, the selective TRPV1 receptor antagonist capsazepine, the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184. The effects of pharmacological treatments were evaluated on restraint-evoked increases in blood pressure and heart rate, sympathetically-mediated cutaneous vasoconstriction and in delayed anxiogenic-like effect assessed 24h after stress exposure in the elevated plus maze (EPM) and open field (OF). We observed that acute restraint stress decreased the exploration of both EPM open arms and OF center region in animals treated with vehicle into the IC, thus indicating an anxiogenic-like effect. Inhibition of MAGL within the IC evoked by local treatment with JZL184 avoided the restraint-evoked anxiogenic effect. IC treatment with JZL184 also attenuated the tachycardia during restraint. The other pharmacological treatments did not modify the cardiovascular, autonomic and behavioral responses evoked by restraint. Taken together, these findings suggest that endocannabinoid neurotransmission in the IC, potentially acting through the endocannabinoid 2-arachidonoylglycerol, plays an inhibitory role in both tachycardia and anxiogenic-like effect evoked by stressful events.
Collapse
MESH Headings
- Animals
- Male
- Endocannabinoids/metabolism
- Rats, Wistar
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Rats
- Heart Rate/drug effects
- Heart Rate/physiology
- Piperidines/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Carbamates/pharmacology
- Anxiety/drug therapy
- Anxiety/physiopathology
- Anxiety/metabolism
- Insular Cortex/drug effects
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Benzodioxoles/pharmacology
- Pyrazoles/pharmacology
- Benzamides/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Autonomic Nervous System/drug effects
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/agonists
Collapse
Affiliation(s)
- Ivaldo J A Belem-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C V Godoy
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Alana T Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Del Bianco Borges
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Ana C F Herval
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernando H F Alves
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Frasier RM, Sergio TDO, Starski PA, Hopf FW. Heart rate variability: A primer for alcohol researchers. Alcohol 2024; 120:41-50. [PMID: 38906390 PMCID: PMC11423806 DOI: 10.1016/j.alcohol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
Problem alcohol drinking remains a major cost and burden for society. Also, rates of problem drinking in women have dramatically increased in recent decades, and women are at risk for more alcohol problems and comorbidities. The purpose of this commentary is to discuss the potential utility of cardiac measures, including heart rate (HR) and HR variability (HRV), as markers of individual and sex differences in the drive to drink alcohol. We recently used cardiac telemetry in female and male adult rats to determine whether different cardiac markers, including HR and HRV, would differently predict alcohol and anxiety-like behavior across the sexes. Indeed, female behaviors related to HRV measures that indicate more parasympathetic (PNS) influence (the "rest and digest" system). In contrast, male behaviors are associated more with sympathetic (SNS) indicators (the activation system). Remarkably, similar sex differences in PNS versus SNS engagement under challenge are seen in several human studies, suggesting strong cross-species convergence in differential autonomic regulation in females and males. Here, we describe the larger challenges that alcohol addiction presents, and how HRV measures may provide new biomarkers to help enhance development of more individualized and sex-specific treatments. We briefly explain the physiological systems underlying cardiac PNS and SNS states, and how specific HRV metrics are defined and validated, especially why particular HRV measures are considered to reflect more PNS versus SNS influence. Finally, we describe hormonal influences and sex differences in brain circuits related to cardiac autonomic regulation. Together, these findings show that HR and HRV have potential for uncovering key underlying mechanisms of sex and individual differences in autonomic drivers, which could guide more personalized treatment.
Collapse
Affiliation(s)
- Raizel M Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University School of Medicine, Medical Scientist Training Program, Indianapolis, IN, USA
| | - Thatiane de Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Phillip A Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - F Woodward Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Tomeo RA, Gomes-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Site-Specific Regulation of Stress Responses Along the Rostrocaudal Axis of the Insular Cortex in Rats. Front Neurosci 2022; 16:878927. [PMID: 35620667 PMCID: PMC9127339 DOI: 10.3389/fnins.2022.878927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The insular cortex (IC) has been described as a part of the central network implicated in the integration and processing of limbic information, being related to the behavioral and physiological responses to stressful events. Besides, a site-specific control of physiological functions has been reported along the rostrocaudal axis of the IC. However, a functional topography of the IC in the regulation of stress responses has never been reported. Therefore, this study aimed to investigate the impact of acute restraint stress in neuronal activation at different sites along the rostrocaudal axis of the IC. Furthermore, we evaluated the involvement of IC rostrocaudal subregions in the cardiovascular responses to acute restraint stress. We observed that an acute session of restraint stress increased the number of Fos-immunoreactive cells in the rostral posterior region of the IC, while fewer activated cells were identified in the anterior and caudal posterior regions. Bilateral injection of the non-selective synaptic inhibitor CoCl2 into the anterior region of the IC did not affect the blood pressure and heart rate increases and the sympathetically mediated cutaneous vasoconstriction to acute restraint stress. However, synaptic ablation of the rostral posterior IC decreased the restraint-evoked arterial pressure increase, whereas tachycardia was reduced in animals in which the caudal posterior IC was inhibited. Taken together, these pieces of evidence indicate a site-specific regulation of cardiovascular stress response along the rostrocaudal axis of the IC.
Collapse
Affiliation(s)
| | | | | | | | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
5
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
6
|
De Oliveira Sergio T, Lei K, Kwok C, Ghotra S, Wegner SA, Walsh M, Waal J, Darevsky D, Hopf FW. The role of anterior insula-brainstem projections and alpha-1 noradrenergic receptors for compulsion-like and alcohol-only drinking. Neuropsychopharmacology 2021; 46:1918-1926. [PMID: 34168279 PMCID: PMC8429444 DOI: 10.1038/s41386-021-01071-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Compulsion-like alcohol drinking (CLAD), where consumption continues despite negative consequences, is a major obstacle to treating alcohol use disorder. The locus coeruleus area in the brainstem and norepinephrine receptor (NER) signaling in forebrain cortical regions have been implicated in adaptive responding under stress, which is conceptually similar to compulsion-like responding (adaptive responding despite the presence of stress or conflict). Thus, we examined whether anterior insula (aINS)-to-brainstem connections and alpha-1 NERs regulated compulsion-like intake and alcohol-only drinking (AOD). Halorhodopsin inhibition of aINS-brainstem significantly reduced CLAD, with no effect on alcohol-only or saccharin intake, suggesting a specific aINS-brainstem role in aversion-resistant drinking. In contrast, prazosin inhibition of alpha-1 NERs systemically reduced both CLAD and AOD. Similar to systemic inhibition, intra-aINS alpha-1-NER antagonism reduced both CLAD and AOD. Global aINS inhibition with GABAR agonists also strongly reduced both CLAD and AOD, without impacting saccharin intake or locomotion, while aINS inhibition of calcium-permeable AMPARs (with NASPM) reduced CLAD without impacting AOD. Finally, prazosin inhibition of CLAD and AOD was not correlated with each other, systemically or within aINS, suggesting the possibility that different aINS pathways regulate CLAD versus AOD, which will require further study to definitively address. Together, our results provide important new information showing that some aINS pathways (aINS-brainstem and NASPM-sensitive) specifically regulate compulsion-like alcohol consumption, while aINS more generally may contain parallel pathways promoting CLAD versus AOD. These findings also support the importance of the adaptive stress response system for multiple forms of alcohol drinking.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Kelly Lei
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Claudina Kwok
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Shahbaj Ghotra
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Margaret Walsh
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Jaclyn Waal
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - David Darevsky
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Shinohara F, Asaoka Y, Kamii H, Minami M, Kaneda K. Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry. Addict Biol 2019; 24:509-521. [PMID: 29480583 DOI: 10.1111/adb.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Effects of stress on the reward system are well established in the literature. Although previous studies have revealed that stress can reinstate extinguished addictive behaviors related to cocaine, the effects of stress on the rewarding memory of cocaine are not fully understood. Here, we provide evidence that stress potentiates the expression of rewarding memory of cocaine via the activation of brainstem-reward circuitry using a cocaine-induced conditioned place preference (CPP) paradigm combined with restraint stress in rats. The rats exposed to 30-minute restraint stress immediately before posttest exhibited significantly larger CPP scores compared with non-stressed rats. Intra-laterodorsal tegmental nucleus (LDT) microinjection of a β or α2 adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. Consistent with this observation, intra-LDT microinjection of a β or α2 adrenoceptor agonist before posttest increased cocaine CPP. Additionally, intra-ventral tegmental area (VTA) microinjection of antagonists for the muscarinic acetylcholine, nicotinic acetylcholine or glutamate receptors attenuated the stress-induced enhancement of cocaine CPP. Finally, intra-medial prefrontal cortex (mPFC) microinjection of a D1 receptor antagonist also reduced the stress-induced enhancement of cocaine CPP. These findings suggest a mechanism wherein the LDT is activated by noradrenergic input from the locus coeruleus, leading to the activation of VTA dopamine neurons via both cholinergic and glutamatergic transmission and the subsequent excitation of the mPFC to enhance the memory of cocaine-induced reward value.
Collapse
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| |
Collapse
|
8
|
Sasaguri K, Yamada K, Yamamoto T. Uncovering the neural circuitry involved in the stress-attenuation effects of chewing. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:118-126. [PMID: 30128059 PMCID: PMC6094491 DOI: 10.1016/j.jdsr.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/08/2017] [Accepted: 03/10/2018] [Indexed: 02/02/2023] Open
Abstract
Previous animal studies have indicated that coupling restraint stress load with activation of the masticatory organs (chewing) causes a reduction in the systemic and central nervous system stress response. However, the brain mechanism underlying this effect is unknown. Therefore, in this review, we summarize the literature regarding brain regions involved in the attenuating effects of chewing and the systemic stress response attenuation effects induced by those brain regions. In addition, we also focusing on the amygdala, as the emotional control center, and the hypothalamic-pituitary-adrenal axis, as one of the outputs of the systemic response. In particular, we will report on one of the chewing-related stress attenuation mechanisms within the brain brought about by the activation of the inhibition pathway accompanying the activation of the amygdala's GABAergic function.
Collapse
Affiliation(s)
- Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kentaro Yamada
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Brain Functions and Neuroscience Division, Department of Oral Science, Kanagawa Dental University Graduate School, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Kanagawa Dental University Graduate School, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
9
|
Achterberg EM, Damsteegt R, Vanderschuren LJ. On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behav Brain Res 2018. [DOI: 10.1016/j.bbr.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Stress Response, Brain Noradrenergic System and Cognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 980:67-74. [PMID: 28132133 DOI: 10.1007/5584_2016_204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Locus coeruleus is a critical component of the brain noradrenergic system. The brain noradrenergic system provides the neural substrate for the architecture supporting the interaction with, and navigation through, an external world complexity. Changes in locus coeruleus tonic and phasic activity and the interplay between norepinephrine and α1- and α2-adrenoceptors in the prefrontal cortex are the key elements of this sophisticated architecture. In this narrative review we discuss how the brain noradrenergic system is affected by increased exposure to corticotropin-releasing hormone triggered by stress response. In particular, we present the mechanisms responsible for thinking inflexibility often observed under highly stressful conditions. Finally, the main directions for future research are highlighted.
Collapse
|
11
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
12
|
Cardiovascular and single-unit responses to L-glutamate injection into the posterior insular cortex in rat. Neuroscience 2015; 306:63-73. [PMID: 26297894 DOI: 10.1016/j.neuroscience.2015.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
Abstract
The insular cortex in rat is a longitudinal strip that runs along the rostral half of the rhinal fissure. The previous studies showed connections between the posterior insular cortex (PIC) and some major cardiovascular centers. Based on the stimulation site, electrical or chemical stimulation of the PIC induced an increase or a decrease in blood pressure (BP) and heart rate (HR). There is no report of simultaneous cardiovascular and single-unit recording microinjection of Glut in the PIC. In this study, L-glutamate was microinjected into the PIC of urethane anesthetized rats and arterial pressure, HR and single-unit responses were recorded simultaneously. Also the response of the neurons to baroreceptor activation was explored. Glut produced five types of long oscillatory, pressor, depressor, bradycardic and tachycardic cardiovascular responses, with no association between pressure and HR responses. We also observed five single-unit responses, consisting of short excitatory, long oscillatory, excitatory, inhibitory and mixed responses. There was an association between oscillation in BP and in single-unit response. There were some differences between the two sides especially for single-unit responses. In conclusion, there were five types of cardiovascular and five types of single-unit responses, to Glut microinjection into PIC, from which three types were correlated. The left side of the PIC is involved more in the cardiovascular functions. These data along with the fact that most recorded neurons responded to baroreceptor activation, might imply the presence of feedback systems in the PIC, producing irregularity in BP and HR.
Collapse
|