1
|
Scerri EML, Roberts P, Yoshi Maezumi S, Malhi Y. Tropical forests in the deep human past. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200500. [PMID: 35249383 PMCID: PMC8899628 DOI: 10.1098/rstb.2020.0500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since Darwin, studies of human evolution have tended to give primacy to open 'savannah' environments as the ecological cradle of our lineage, with dense tropical forests cast as hostile, unfavourable frontiers. These perceptions continue to shape both the geographical context of fieldwork as well as dominant narratives concerning hominin evolution. This paradigm persists despite new, ground-breaking research highlighting the role of tropical forests in the human story. For example, novel research in Africa's rainforests has uncovered archaeological sites dating back into the Pleistocene; genetic studies have revealed very deep human roots in Central and West Africa and in the tropics of Asia and the Pacific; an unprecedented number of coexistent hominin species have now been documented, including Homo erectus, the 'Hobbit' (Homo floresiensis), Homo luzonensis, Denisovans, and Homo sapiens. Some of the earliest members of our own species to reach South Asia, Southeast Asia, Oceania and the tropical Americas have shown an unexpected rapidity in their adaptation to even some of the more 'extreme' tropical settings. This includes the early human manipulation of species and even habitats. This volume builds on these currently disparate threads and, for the first time, draws together a group of interdisciplinary, agenda-setting papers that firmly places a broader spectrum of tropical environments at the heart of the deep human past. This article is part of the theme issue 'Tropical forests in the deep human past'.
Collapse
Affiliation(s)
- Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Department of Prehistoric Archaeology, University of Cologne, 50931 Cologne, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745, Jena, Germany.,School of Social Sciences, University of Queensland, Brisbane, Australia
| | - S Yoshi Maezumi
- Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
2
|
Orijemie EA. Human behaviour and climate-linked fluctuations in the rainforests of West-Central Africa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200488. [PMID: 35249382 PMCID: PMC8899626 DOI: 10.1098/rstb.2020.0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Africa, the cradle of human evolution, has one of the largest and most diverse rainforests in the world. The African rainforests contain evidence of human occupation as well as fluctuating climate during the Pleistocene; such evidence offers archaeologists and palaeoecologists the opportunity to understand how climatic fluctuations have influenced human behaviour. However, compared to the rainforests environments in Asia and South America, the human ecological history of those in West-Central Africa is poorly understood. This is because of comparatively fewer scientific programmes which synergize palaeoecological and archaeological data and thus could enhance the knowledge and allow for an evaluation of the impact of climatic fluctuations on human behaviour in the rainforests of West-Central Africa during the Pleistocene and Holocene periods. The goals of this paper are twofold, namely: (i) to provide a synthesis of the past climatic variability in the rainforests of West-Central Africa, and (ii) to demonstrate the influence of such variability on human behaviour during the Pleistocene to Holocene periods. It is hoped that this paper will stimulate Africanists to adopt an inclusive scientific anthropological and palaeoecological approach in understanding human-climate interactions in the West-Central African rainforests. This article is part of the theme issue 'Tropical forests in the deep human past'.
Collapse
|
3
|
Bayle P, Armand D, Bessou M, Cochard D, Couture C, Deguilloux M, Ferrier C, Haget C, Jaubert J, Knüsel C, Martins S, Pubert É, Rottier S, Souron A, Beauval C, Caillo A, Dutailly B, Girault T, Hesry M, Lacrampe‐Cuyaubère F, Ledevin R, Masset C, Mesa‐Saborido M, Mora P, Muth X, Pinson R, Thibeault A, Thomas M, Vanderesse N, Bordes J. Enhancing the learning of evolutionary anthropology skills by combining student‐active teaching with actual and virtual immersion of Master's students in fieldwork, laboratory practice, and dissemination. Ecol Evol 2022; 12:e8825. [PMID: 35441006 PMCID: PMC9012909 DOI: 10.1002/ece3.8825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/26/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Higher education in evolutionary anthropology involves providing students with in‐depth knowledge of biological and cultural heritage sites and collections that are frequently inaccessible. Indeed, most sites, fossils, and archaeological remains can be visited or manipulated only rarely and solely by specialists with extensive experience. Owing to the development of 3D and medical imaging techniques, this fragile heritage is now more widely accessible, and in a dynamic way. However, exclusive adoption of virtual teaching and learning has a negative impact on student engagement and, naturally, on exchanges with instructors, and thus cannot be used without some reservations. In the ITAP (Immersion dans les Terrains de l’Anthropologie biologique et de la Préhistoire) project of the higher education STEP (Soutien à la Transformation et à l’Expérimentation Pédagogiques) transformation program at the University of Bordeaux, we combine student‐active teaching with Master's students fully immersed in ongoing fieldwork, laboratory study, and dissemination of research results in order to develop more individually shaped learning curricula and to foster both professional and new interdisciplinary skills. Here, we present examples of experiments conducted in the ITAP project using both authentic and virtual collections of archaeological, experimental, and reference materials that help to break down the barriers between research activities and higher education, as well as providing a more general appraisal of the appropriate use of virtual tools in higher education by combining them with real‐life situations.
Collapse
Affiliation(s)
- Priscilla Bayle
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Maryelle Bessou
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | - David Cochard
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | | | | | - Cathy Haget
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | - Jacques Jaubert
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Stéphanie Martins
- Mission d'Appui à la Pédagogie et à l'Innovation University of Bordeaux Bordeaux France
| | - Éric Pubert
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Antoine Souron
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Arnaud Caillo
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | - Bruno Dutailly
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
- UMS 3657 CNRS, Archéovision Bordeaux Montaigne University Pessac France
| | - Thomas Girault
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | - Malo Hesry
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Ronan Ledevin
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | | | - Pascal Mora
- UMS 3657 CNRS, Archéovision Bordeaux Montaigne University Pessac France
| | | | - Raphaël Pinson
- UMR5199 CNRS, MC, PACEA University of Bordeaux Pessac France
| | | | - Marc Thomas
- UMR 5608 CNRS, TRACES University of Toulouse Jean Jaurès Toulouse France
| | | | | |
Collapse
|
4
|
Zanolli C, Biglari F, Mashkour M, Abdi K, Monchot H, Debue K, Mazurier A, Bayle P, Le Luyer M, Rougier H, Trinkaus E, Macchiarelli R. A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. J Hum Evol 2019; 135:102643. [DOI: 10.1016/j.jhevol.2019.102643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023]
|
5
|
Dykes SJ, Pilbrow VC. A mathematical landmark-based method for measuring worn molars in hominoid systematics. PeerJ 2019; 7:e6990. [PMID: 31198638 PMCID: PMC6535218 DOI: 10.7717/peerj.6990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/20/2019] [Indexed: 11/30/2022] Open
Abstract
Worn teeth pose a major limitation to researchers in the fields of extinct and extant hominoid systematics because they lack clearly identifiable anatomical landmarks needed to take measurements on the crown enamel surface and are typically discarded from a study. This is particularly detrimental when sample sizes for some groups are already characteristically low, if there is an imbalance between samples representing populations, sexes or dietary strategies, or if the worn teeth in question are type specimens of fossil species or other key specimens. This study proposes a methodology based predominantly on mathematically-derived landmarks for measuring size and shape features of molars, irrespective of wear. With 110 specimens of lower second molars from five species of extant hominoids (Pan troglodytes, P. paniscus, Gorilla gorilla, G. beringei, Homo sapiens), n ≥ 20 per species, n ≥ 10 per subspecies, good species separation in morphospace is achieved in a principal components analysis. Classification accuracy in a discriminant function analysis is 96.4% at the species level and 88.2% at the subspecies level (92.7% and 79.1%, respectively, on cross-validation). The classification accuracy compares favorably to that achieved by anatomically-derived measurements based on published research (94% and 84% at the species and subspecies level respectively; 91% and 76% on cross-validation). The mathematical landmarking methodology is rapid and uncomplicated. The results support the use of mathematical landmarks to enable the inclusion of worn molar teeth in dental studies so as to maximize sample sizes and restore balance between populations and/or sexes in hominoid systematic studies.
Collapse
Affiliation(s)
- Susan J. Dykes
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Varsha C. Pilbrow
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Zanolli C, Pan L, Dumoncel J, Kullmer O, Kundrát M, Liu W, Macchiarelli R, Mancini L, Schrenk F, Tuniz C. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden. J Hum Evol 2018; 116:1-13. [DOI: 10.1016/j.jhevol.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/10/2023]
|
7
|
Woods C, Fernee C, Browne M, Zakrzewski S, Dickinson A. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research. PLoS One 2017; 12:e0186754. [PMID: 29216199 PMCID: PMC5720725 DOI: 10.1371/journal.pone.0186754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 10/07/2017] [Indexed: 01/15/2023] Open
Abstract
This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets.
Collapse
Affiliation(s)
- Christopher Woods
- Bioengineering Sciences Research Group, University of Southampton, Highfield Campus, Highfield, Southampton, United Kingdom
| | - Christianne Fernee
- Department of Archaeology, University of Southampton, Avenue Campus, Highfield, Southampton, United Kingdom
| | - Martin Browne
- Bioengineering Sciences Research Group, University of Southampton, Highfield Campus, Highfield, Southampton, United Kingdom
| | - Sonia Zakrzewski
- Department of Archaeology, University of Southampton, Avenue Campus, Highfield, Southampton, United Kingdom
| | - Alexander Dickinson
- Bioengineering Sciences Research Group, University of Southampton, Highfield Campus, Highfield, Southampton, United Kingdom
| |
Collapse
|
8
|
Le Luyer M, Coquerelle M, Rottier S, Bayle P. Internal Tooth Structure and Burial Practices: Insights into the Neolithic Necropolis of Gurgy (France, 5100-4000 cal. BC). PLoS One 2016; 11:e0159688. [PMID: 27447183 PMCID: PMC4957824 DOI: 10.1371/journal.pone.0159688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves.
Collapse
Affiliation(s)
- Mona Le Luyer
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
- * E-mail:
| | | | - Stéphane Rottier
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
| | - Priscilla Bayle
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
| |
Collapse
|
9
|
Mirazón Lahr M. The shaping of human diversity: filters, boundaries and transitions. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150241. [PMID: 27298471 PMCID: PMC4920297 DOI: 10.1098/rstb.2015.0241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/21/2023] Open
Abstract
The evolution of modern humans was a complex process, involving major changes in levels of diversity through time. The fossils and stone tools that record the spatial distribution of our species in the past form the backbone of our evolutionary history, and one that allows us to explore the different processes-cultural and biological-that acted to shape the evolution of different populations in the face of major climate change. Those processes created a complex palimpsest of similarities and differences, with outcomes that were at times accelerated by sharp demographic and geographical fluctuations. The result is that the population ancestral to all modern humans did not look or behave like people alive today. This has generated questions regarding the evolution of human universal characters, as well as the nature and timing of major evolutionary events in the history of Homo sapiens The paucity of African fossils remains a serious stumbling block for exploring some of these issues. However, fossil and archaeological discoveries increasingly clarify important aspects of our past, while breakthroughs from genomics and palaeogenomics have revealed aspects of the demography of Late Quaternary Eurasian hominin groups and their interactions, as well as those between foragers and farmers. This paper explores the nature and timing of key moments in the evolution of human diversity, moments in which population collapse followed by differential expansion of groups set the conditions for transitional periods. Five transitions are identified (i) at the origins of the species, 240-200 ka; (ii) at the time of the first major expansions, 130-100 ka; (iii) during a period of dispersals, 70-50 ka; (iv) across a phase of local/regional structuring of diversity, 45-25 ka; and (v) during a phase of significant extinction of hunter-gatherer diversity and expansion of particular groups, such as farmers and later societies (the Holocene Filter), 15-0 ka.This article is part of the themed issue 'Major transitions in human evolution'.
Collapse
Affiliation(s)
- Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| |
Collapse
|
10
|
Crevecoeur I, Brooks A, Ribot I, Cornelissen E, Semal P. Late Stone Age human remains from Ishango (Democratic Republic of Congo): New insights on Late Pleistocene modern human diversity in Africa. J Hum Evol 2016; 96:35-57. [PMID: 27343771 DOI: 10.1016/j.jhevol.2016.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022]
Abstract
Although questions of modern human origins and dispersal are subject to intense research within and outside Africa, the processes of modern human diversification during the Late Pleistocene are most often discussed within the context of recent human genetic data. This situation is due largely to the dearth of human fossil remains dating to the final Pleistocene in Africa and their almost total absence from West and Central Africa, thus limiting our perception of modern human diversification within Africa before the Holocene. Here, we present a morphometric comparative analysis of the earliest Late Pleistocene modern human remains from the Central African site of Ishango in the Democratic Republic of Congo. The early Late Stone Age layer (eLSA) of this site, dated to the Last Glacial Maximum (25-20 Ky), contains more than one hundred fragmentary human remains. The exceptional associated archaeological context suggests these remains derived from a community of hunter-fisher-gatherers exhibiting complex social and cognitive behaviors including substantial reliance on aquatic resources, development of fishing technology, possible mathematical notations and repetitive use of space, likely on a seasonal basis. Comparisons with large samples of Late Pleistocene and early Holocene modern human fossils from Africa and Eurasia show that the Ishango human remains exhibit distinctive characteristics and a higher phenotypic diversity in contrast to recent African populations. In many aspects, as is true for the inner ear conformation, these eLSA human remains have more affinities with Middle to early Late Pleistocene fossils worldwide than with extant local African populations. In addition, cross-sectional geometric properties of the long bones are consistent with archaeological evidence suggesting reduced terrestrial mobility resulting from greater investment in and use of aquatic resources. Our results on the Ishango human remains provide insights into past African modern human diversity and adaptation that are consistent with genetic theories about the deep sub-structure of Late Pleistocene African populations and their complex evolutionary history of isolation and diversification.
Collapse
Affiliation(s)
- I Crevecoeur
- UMR 5199 PACEA, CNRS, Université de Bordeaux, Pessac, France.
| | - A Brooks
- Department of Anthropology, George Washington University, Washington DC, USA
| | - I Ribot
- Département d'Anthropologie, Université de Montréal, Montréal, Canada
| | - E Cornelissen
- Culturele Antropologie/Prehistorie en Archeologie, Koninklijk Museum voor Midden-Afrika (KMMA), Tervuren, Belgium
| | - P Semal
- Scientific Service of Heritage, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| |
Collapse
|
11
|
Skinner MM, de Vries D, Gunz P, Kupczik K, Klassen RP, Hublin JJ, Roksandic M. A dental perspective on the taxonomic affinity of the Balanica mandible (BH-1). J Hum Evol 2016; 93:63-81. [DOI: 10.1016/j.jhevol.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 11/04/2015] [Accepted: 01/31/2016] [Indexed: 01/19/2023]
|
12
|
Abstract
BACKGROUND Diagnosing Homo sapiens is a critical question in the study of human evolution. Although what constitutes living members of our own species is straightforward, in the fossil record this is still a matter of much debate. The issue is complicated by questions of species diagnoses and ideas about the mode by which a new species is born, by the arguments surrounding the behavioural and cognitive separateness of the species, by the increasing appreciation of variation in the early African H. sapiens record and by new DNA evidence of hybridization with extinct species. METHODS AND RESULTS This study synthesizes thinking on the fossils, archaeology and underlying evolutionary models of the last several decades with recent DNA results from both H. sapiens and fossil species. CONCLUSION It is concluded that, although it may not be possible or even desirable to cleanly partition out a homogenous morphological description of recent H. sapiens in the fossil record, there are key, distinguishing morphological traits in the cranium, dentition and pelvis that can be usefully employed to diagnose the H. sapiens lineage. Increasing advances in retrieving and understanding relevant genetic data provide a complementary and perhaps potentially even more fruitful means of characterizing the differences between H. sapiens and its close relatives.
Collapse
|
13
|
Zanolli C. Molar crown inner structural organization in JavaneseHomo erectus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156:148-57. [DOI: 10.1002/ajpa.22611] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/27/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Clément Zanolli
- Multidisciplinary Laboratory; International Centre for Theoretical Physics; Trieste Italy
| |
Collapse
|