1
|
Chen SF, Hsien HL, Wang TF, Lin MD. Drosophila Phosphatase of Regenerating Liver Is Critical for Photoreceptor Cell Polarity and Survival during Retinal Development. Int J Mol Sci 2023; 24:11501. [PMID: 37511262 PMCID: PMC10380645 DOI: 10.3390/ijms241411501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.
Collapse
Affiliation(s)
- Shu-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Hsin-Lun Hsien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ting-Fang Wang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, 701 Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Johansson JA, Marie KL, Lu Y, Brombin A, Santoriello C, Zeng Z, Zich J, Gautier P, von Kriegsheim A, Brunsdon H, Wheeler AP, Dreger M, Houston DR, Dooley CM, Sims AH, Busch-Nentwich EM, Zon LI, Illingworth RS, Patton EE. PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Dev Cell 2020; 54:317-332.e9. [PMID: 32652076 PMCID: PMC7435699 DOI: 10.1016/j.devcel.2020.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer.
Collapse
Affiliation(s)
- Jeanette A Johansson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kerrie L Marie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuting Lu
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Cristina Santoriello
- Stem Cell Program and Division of Hematology, Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, USA
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Judith Zich
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hannah Brunsdon
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Marcel Dreger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, Waddington Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christopher M Dooley
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology, Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, USA
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK; Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
4
|
Lian S, Meng L, Yang Y, Ma T, Xing X, Feng Q, Song Q, Liu C, Tian Z, Qu L, Shou C. PRL-3 promotes telomere deprotection and chromosomal instability. Nucleic Acids Res 2017; 45:6546-6571. [PMID: 28482095 PMCID: PMC5499835 DOI: 10.1093/nar/gkx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphatase of regenerating liver (PRL-3) promotes cell invasiveness, but its role in genomic integrity remains unknown. We report here that shelterin component RAP1 mediates association between PRL-3 and TRF2. In addition, TRF2 and RAP1 assist recruitment of PRL-3 to telomeric DNA. Silencing of PRL-3 in colon cancer cells does not affect telomere integrity or chromosomal stability, but induces reactive oxygen species-dependent DNA damage response and senescence. However, overexpression of PRL-3 in colon cancer cells and primary fibroblasts promotes structural abnormalities of telomeres, telomere deprotection, DNA damage response, chromosomal instability and senescence. Furthermore, PRL-3 dissociates RAP1 and TRF2 from telomeric DNA in vitro and in cells. PRL-3-promoted telomere deprotection, DNA damage response and senescence are counteracted by disruption of PRL-3–RAP1 complex or expression of ectopic TRF2. Examination of clinical samples showed that PRL-3 status positively correlates with telomere deprotection and senescence. PRL-3 transgenic mice exhibit hallmarks of telomere deprotection and senescence and are susceptible to dextran sodium sulfate-induced colon malignancy. Our results uncover a novel role of PRL-3 in tumor development through its adverse impact on telomere homeostasis.
Collapse
Affiliation(s)
- Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongyong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qin Feng
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihua Tian
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
Deichmann C, Link M, Seyfang M, Knotz V, Gradl D, Wedlich D. Neural crest specification by Prohibitin1 depends on transcriptional regulation of prl3 and vangl1. Genesis 2015; 53:627-39. [PMID: 26259516 DOI: 10.1002/dvg.22883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 12/19/2022]
Abstract
A complex network of transcription factors regulates specification of neural crest cells at early neurula stage by stabilizing neural crest identity and activating neural crest effector genes so that distinct subpopulations evolve. In this network, c-myc acts on top of the gene hierarchy controlling snail2, AP2 and prohibitin1 (phb1) expression. While snail2 and AP2 are well studied neural crest specifier genes little is known about the role of phb1 in this process. To identify phb1 regulated genes we analyzed the transcriptome of neural crest explants of phb1 morphant Xenopus embryos. Among 147 phb1 regulated genes we identified the membrane-associated protein-tyrosine phosphatase PRP4A3 (prl3) and the atypical cadherin and Wnt-PCP component van gogh like1 (vangl1). Gain of function, loss of function and epistasis experiments allowed us to allocate both genes in the neural crest specification network between phb1 and twist. Interestingly, both, vangl1 and prl3 regulate only a small subset of neural crest marker genes. The identification of two membrane-associated proteins as novel neural crest specifiers indicates that in addition to gene regulation by combinatory effects of transcription factors also post-translational modifications (prl3) and cell-cell adhesion and/or regulation of cell-polarity (vangl1) specify the identity of neural crest cell populations. genesis 53:627-639, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Deichmann
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Martina Link
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Melanie Seyfang
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Viktoria Knotz
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Doris Wedlich
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| |
Collapse
|