1
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Wang G, Song L, Bai T, Liang W. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1242-1251. [PMID: 32689887 DOI: 10.1094/mpmi-06-20-0149-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.
Collapse
Affiliation(s)
- Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Limin Song
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Tingting Bai
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, the Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Thakur A, Wong JCH, Wang EY, Lotto J, Kim D, Cheng JC, Mingay M, Cullum R, Moudgil V, Ahmed N, Tsai SH, Wei W, Walsh CP, Stephan T, Bilenky M, Fuglerud BM, Karimi MM, Gonzalez FJ, Hirst M, Hoodless PA. Hepatocyte Nuclear Factor 4-Alpha Is Essential for the Active Epigenetic State at Enhancers in Mouse Liver. Hepatology 2019; 70:1360-1376. [PMID: 30933372 PMCID: PMC6773525 DOI: 10.1002/hep.30631] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC). In mice lacking HNF4A protein in hepatocytes, we observed a decrease in both H3K27ac and hydroxymethylation at regions bound by HNF4A. Mechanistically, HNF4A-associated hydroxymethylation (5hmC) requires its interaction with ten-eleven translocation methylcytosine dioxygenase 3 (TET3), a protein responsible for oxidation from 5mC to 5hmC. Furthermore, HNF4A regulates TET3 expression in liver by directly binding to an enhancer region. Conclusion: In conclusion, we identified that HNF4A is required for the active epigenetic state at enhancers that amplifies transcription of genes in hepatocytes.
Collapse
Affiliation(s)
- Avinash Thakur
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Jasper C. H. Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Y. Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Donghwan Kim
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Jung-Chien Cheng
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Matthew Mingay
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Vaishali Moudgil
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Nafeel Ahmed
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Shu-Huei Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Colum P. Walsh
- Genomic Medicine Research Group, Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK
| | - Tabea Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3
| | - Misha Bilenky
- Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Bettina M. Fuglerud
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Biosciences, University of Oslo, Oslo, Norway, 0316
| | | | - Frank J. Gonzalez
- Center of Cancer Research, National Cancer Institute, Bethesda MD 2089
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada,Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada, V5Z 1L3,Department of Medical Genetics, University of British Columbia, Vancouver, Canada, V6T 1Z4,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada, V6T 1Z4
| |
Collapse
|
4
|
Guerra JVDS, Pereira BMDS, Cruz JGVD, Scherer NDM, Furtado C, Montalvão de Azevedo R, Oliveira PSLD, Faria P, Boroni M, de Camargo B, Maschietto M. Genes Controlled by DNA Methylation Are Involved in Wilms Tumor Progression. Cells 2019; 8:cells8080921. [PMID: 31426508 PMCID: PMC6721649 DOI: 10.3390/cells8080921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
To identify underlying mechanisms involved with metastasis formation in Wilms tumors (WTs), we performed comprehensive DNA methylation and gene expression analyses of matched normal kidney (NK), WT blastemal component, and metastatic tissues (MT) from patients treated under SIOP 2001 protocol. A linear Bayesian framework model identified 497 differentially methylated positions (DMPs) between groups that discriminated NK from WT, but MT samples were divided in two groups. Accordingly, methylation variance grouped NK and three MT samples tightly together and all WT with four MT samples that showed high variability. WT were hypomethylated compared to NK, and MT had a hypermethylated pattern compared to both groups. The methylation patterns were in agreement with methylases and demethylases expression. Methylation data pointed to the existence of two groups of metastases. While hierarchical clustering analysis based on the expression of all 2569 differentially expressed genes (DEGs) discriminated WT and MT from all NK samples, the hierarchical clustering based on the expression of 44 genes with a differentially methylated region (DMR) located in their promoter region revealed two groups: one containing all NKs and three MTs and one containing all WT and four MTs. Methylation changes might be controlling expression of genes associated with WT progression. The 44 genes are candidates to be further explored as a signature for metastasis formation in WT.
Collapse
Affiliation(s)
- João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
- Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, Campinas 13083-862, Brazil
| | | | | | - Nicole de Miranda Scherer
- Bioinformatics an Computacional Biology Lab, Brazilian National Cancer Institute (INCa), Rio de Janeiro 20231-050, Brazil
| | - Carolina Furtado
- Brazilian National Cancer Institute (INCa), Rio de Janeiro 20231-050, Brazil
| | | | - Paulo Sergio Lopes de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| | - Paulo Faria
- Brazilian National Cancer Institute (INCa), Rio de Janeiro 20231-050, Brazil
| | - Mariana Boroni
- Bioinformatics an Computacional Biology Lab, Brazilian National Cancer Institute (INCa), Rio de Janeiro 20231-050, Brazil
| | - Beatriz de Camargo
- Brazilian National Cancer Institute (INCa), Rio de Janeiro 20231-050, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
- Boldrini Children's Hospital, Campinas 13083-884, Brazil.
| |
Collapse
|
5
|
Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun 2019; 10:433. [PMID: 30683861 PMCID: PMC6347614 DOI: 10.1038/s41467-018-08182-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
Aberrant sperm flagella impair sperm motility and cause male infertility, yet the genes which have been identified in multiple morphological abnormalities of the flagella (MMAF) can only explain the pathogenic mechanisms of MMAF in a small number of cases. Here, we identify and functionally characterize homozygous loss-of-function mutations of QRICH2 in two infertile males with MMAF from two consanguineous families. Remarkably, Qrich2 knock-out (KO) male mice constructed by CRISPR-Cas9 technology present MMAF phenotypes and sterility. To elucidate the mechanisms of Qrich2 functioning in sperm flagellar formation, we perform proteomic analysis on the testes of KO and wild-type mice. Furthermore, in vitro experiments indicate that QRICH2 is involved in sperm flagellar development through stabilizing and enhancing the expression of proteins related to flagellar development. Our findings strongly suggest that the genetic mutations of human QRICH2 can lead to male infertility with MMAF and that QRICH2 is essential for sperm flagellar formation.
Collapse
|
6
|
Ruoß M, Damm G, Vosough M, Ehret L, Grom-Baumgarten C, Petkov M, Naddalin S, Ladurner R, Seehofer D, Nussler A, Sajadian S. Epigenetic Modifications of the Liver Tumor Cell Line HepG2 Increase Their Drug Metabolic Capacity. Int J Mol Sci 2019; 20:347. [PMID: 30654452 PMCID: PMC6358789 DOI: 10.3390/ijms20020347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Although human liver tumor cells have reduced metabolic functions as compared to primary human hepatocytes (PHH) they are widely used for pre-screening tests of drug metabolism and toxicity. The aim of the present study was to modify liver cancer cell lines in order to improve their drug-metabolizing activities towards PHH. It is well-known that epigenetics is strongly modified in tumor cells and that epigenetic regulators influence the expression and function of Cytochrome P450 (CYP) enzymes through altering crucial transcription factors responsible for drug-metabolizing enzymes. Therefore, we screened the epigenetic status of four different liver cancer cell lines (Huh7, HLE, HepG2 and AKN-1) which were reported to have metabolizing drug activities. Our results showed that HepG2 cells demonstrated the highest similarity compared to PHH. Thus, we modified the epigenetic status of HepG2 cells towards 'normal' liver cells by 5-Azacytidine (5-AZA) and Vitamin C exposure. Then, mRNA expression of Epithelial-mesenchymal transition (EMT) marker SNAIL and CYP enzymes were measured by PCR and determinate specific drug metabolites, associated with CYP enzymes by LC/MS. Our results demonstrated an epigenetic shift in HepG2 cells towards PHH after exposure to 5-AZA and Vitamin C which resulted in a higher expression and activity of specific drug metabolizing CYP enzymes. Finally, we observed that 5-AZA and Vitamin C led to an increased expression of Hepatocyte nuclear factor 4α (HNF4α) and E-Cadherin and a significant down regulation of Snail1 (SNAIL), the key transcriptional repressor of E-Cadherin. Our study shows, that certain phase I genes and their enzyme activities are increased by epigenetic modification in HepG2 cells with a concomitant reduction of EMT marker gene SNAIL. The enhancing of liver specific functions in hepatoma cells using epigenetic modifiers opens new opportunities for the usage of cell lines as a potential liver in vitro model for drug testing and development.
Collapse
Affiliation(s)
- Marc Ruoß
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | - Massoud Vosough
- Royan Institute for Stem Cell Biology and Technology, Department of Stem Cells and Developmental Biology, Tehran 16635-148, Iran.
| | - Lisa Ehret
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Carl Grom-Baumgarten
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Martin Petkov
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Silvio Naddalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Ruth Ladurner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | - Andreas Nussler
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Sahar Sajadian
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Guo S, Lu H. Novel mechanisms of regulation of the expression and transcriptional activity of hepatocyte nuclear factor 4α. J Cell Biochem 2019; 120:519-532. [PMID: 30191603 PMCID: PMC7745837 DOI: 10.1002/jcb.27407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of development and function of digestive tissues. The HNF4A gene uses two separate promoters P1 and P2, with P1 products predominant in adult liver, whereas P2 products prevalent in fetal liver, pancreas, and liver/colon cancer. To date, the mechanisms for the regulation of HNF4A and the dynamic switch of P1-HNF4α and P2-HNF4α during ontogenesis and carcinogenesis are still obscure. Our study validated the previously reported self-stimulation of P1-HNF4α but invalidated the reported synergism between HNF4α and HNF1α. HNF4A-AS1, a long noncoding RNA, is localized between the P2 and P1 promoters of HNF4A. We identified critical roles of P1-HNF4α in regulating the expression of HNF4A-AS1 and its mouse ortholog Hnf4a-os. Paired box 6 (PAX6), a master regulator of pancreas development overexpressed in colon cancer, cooperated with HNF1α to induce P2-HNF4α but antagonized HNF4α in HNF4A-AS1 expression. Thus, PAX6 may be important in determining ontogenic and carcinogenic changes of P2-HNF4α and HNF4A-AS1 in the pancreas and intestine. We also interrogated transactivation activities on multiple gene targets by multiple known and novel HNF4α mutants identified in patients with maturity onset diabetes of the young 1 (MODY1) and liver cancer. Particularly, HNF4α-D78A and HNF4α-G79S, two mutants found in liver cancer with mutations in DNA-binding domain, displayed highly gene-specific transactivation activities. Interestingly, HNF4α-Q277X, a MODY1 truncation mutant, antagonized the transactivation activities of HNF1α and farnesoid X receptor, key regulators of insulin secretion. Taken together, our study provides novel mechanistic insights regarding the transcriptional regulation and transactivation activity of HNF4α in digestive tissues.
Collapse
Affiliation(s)
- Shangdong Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S
| |
Collapse
|
8
|
Lu H, Lei X, Zhang Q. Liver-specific knockout of histone methyltransferase G9a impairs liver maturation and dysregulates inflammatory, cytoprotective, and drug-processing genes. Xenobiotica 2018; 49:740-752. [PMID: 29912608 DOI: 10.1080/00498254.2018.1490044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methyltransferase G9a is essential for a key gene silencing mark, histone H3 dimethylation at lysine-9 (H3K9me2). Hepatic G9a expression is down-regulated by xenobiotics and diabetes. However, little is known about the role of G9a in liver. Thus, we generated mice with liver-specific knockout (Liv-KO) of G9a. Adult G9a Liv-KO mice had marked loss of H3K9me2 proteins in liver, without overt liver injury or infiltration of inflammatory cells. However, G9a-null livers had ectopic induction of certain genes normally expressed in neural and immune systems. Additionally, G9a-null livers had moderate down-regulation of cytoprotective genes, markedly altered expression of certain important drug-processing genes, elevated endogenous reactive oxygen species, induction of ER stress marker Chop, but decreased glutathione and nuclear Nrf2. microRNA-383, a negative regulator of the PI3K/Akt pathway, was strongly induced in G9a Liv-KO mice. After LPS treatment, G9a Liv-KO mice had aggravated lipid peroxidation and proinflammatory response. Taken together, the present study demonstrates that G9a regulates liver maturation by silencing neural and proinflammatory genes but maintaining/activating cytoprotective and drug-processing genes, in which the G9a/miR-383/PI3K/Akt/Nrf2 (Chop) pathways may play important roles. G9a deficiency due to genetic polymorphism and/or environmental exposure may alter xenobiotic metabolism and aggravate inflammation and liver dysfunction.
Collapse
Affiliation(s)
- Hong Lu
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Xiaohong Lei
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| | - Qinghao Zhang
- a Department of Pharmacology , SUNY Upstate Medical University , Syracuse , USA
| |
Collapse
|
9
|
Shin JG, Cheong HS, Kim JY, Lee JH, Yu SJ, Yoon JH, Cheong JY, Cho SW, Park NH, Namgoong S, Kim LH, Kim YJ, Shin HD. Identification of additional EHMT2 variant associated with the risk of chronic hepatitis B by GWAS follow-up study. Genes Immun 2017; 20:1-9. [PMID: 29238036 DOI: 10.1038/s41435-017-0004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B (CHB) is a precursor to liver cirrhosis and hepatocellular carcinoma, caused by a Hepatitis B viral infection. Genome-wide association studies (GWASs) have been conducted to find genes associated with CHB risk. In previous GWAS, EHMT2 was identified as one of the susceptibility genes for CHB. To further characterize this association and discover possible causal variants, we conducted an additional association study. A total of 11 EHMT2 single-nucleotide polymorphisms (SNP) were selected and genotyped in 3902 subjects (1046 CHB patients and 2856 controls). An additional eight imputed SNPs were also included in further analysis. As a result, rs35875104 showed a strong association with the CHB, along with the previously reported genetic marker for CHB risk, rs652888 (odds ratio (OR) = 0.53, P = 2.20 × 10-8 at rs35875104 and OR = 1.58, P = 9.90 × 10-12 at rs652888). In addition, linkage disequilibrium and conditional analysis identified one SNP (rs35875104) as a novel genetic marker for CHB susceptibility. The GRSs (genetic risk scores) were calculated to visualize the combined genetic effects of all known CHB-associated loci, including EHMT2 rs35875104, which was additionally identified in this study. The findings from the present study may be useful for further understanding of the genetic etiology of CHB.
Collapse
Affiliation(s)
- Joong-Gon Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Research Institute for Basic Science, Sogang University, Seoul, 121-742, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jason Yongha Kim
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | - Jae Youn Cheong
- Department of Internal Medicine, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 156-707, Republic of Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, San-5 Wonchon-dong, Youngtong-gu, Suwon, 442-721, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, Ulsan University Hospital, 877 Bangeojin Sunhwan-doro, Dong-gu, Ulsan, 682-714, Republic of Korea
| | - Suhg Namgoong
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University, 28 Yungun-dong, Chongro-Gu, Seoul, 110-744, Republic of Korea.
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea. .,Research Institute for Basic Science, Sogang University, Seoul, 121-742, Republic of Korea. .,Department of Genetic Epidemiology, SNP Genetics, Sogang University, Inc., Taihard building 1007, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.
| |
Collapse
|
10
|
Lu H, Lei X, Liu J, Klaassen C. Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha. World J Hepatol 2017; 9:191-208. [PMID: 28217257 PMCID: PMC5295159 DOI: 10.4254/wjh.v9.i4.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/02/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4α) in regulating hepatic expression of microRNAs.
METHODS Microarray and real-time PCR were used to determine hepatic expression of microRNAs in young-adult mice lacking Hnf4α expression in liver (Hnf4α-LivKO). Integrative genomics viewer software was used to analyze the public chromatin immunoprecipitation-sequencing datasets for DNA-binding of HNF4α, RNA polymerase-II, and histone modifications to loci of microRNAs in mouse liver and human hepatoma cells. Dual-luciferase reporter assay was conducted to determine effects of HNF4α on the promoters of mouse and human microRNAs as well as effects of microRNAs on the untranslated regions (3’UTR) of two genes in human hepatoma cells.
RESULTS Microarray data indicated that most microRNAs remained unaltered by Hnf4α deficiency in Hnf4α-LivKO mice. However, certain liver-predominant microRNAs were down-regulated similarly in young-adult male and female Hnf4α-LivKO mice. The down-regulation of miR-101, miR-192, miR-193a, miR-194, miR-215, miR-802, and miR-122 as well as induction of miR-34 and miR-29 in male Hnf4α-LivKO mice were confirmed by real-time PCR. Analysis of public chromatin immunoprecipitation-sequencing data indicates that HNF4α directly binds to the promoters of miR-101, miR-122, miR-194-2/miR-192 and miR-193, which is associated with histone marks of active transcription. Luciferase reporter assay showed that HNF4α markedly activated the promoters of mouse and human miR-101b/miR-101-2 and the miR-194/miR-192 cluster. Additionally, miR-192 and miR-194 significantly decreased activities of luciferase reporters for the 3’UTR of histone H3F3 and chromodomain helicase DNA binding protein 1 (CHD1), respectively, suggesting that miR-192 and miR-194 might be important in chromosome remodeling through directly targeting H3F3 and CHD1.
CONCLUSION HNF4α is essential for hepatic basal expression of a group of liver-enriched microRNAs, including miR-101, miR-192, miR-193a, miR-194 and miR-802, through which HNF4α may play a major role in the post-transcriptional regulation of gene expression and maintenance of the epigenome in liver.
Collapse
|
11
|
Crosstalk of HNF4 α with extracellular and intracellular signaling pathways in the regulation of hepatic metabolism of drugs and lipids. Acta Pharm Sin B 2016; 6:393-408. [PMID: 27709008 PMCID: PMC5045537 DOI: 10.1016/j.apsb.2016.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022] Open
Abstract
The liver is essential for survival due to its critical role in the regulation of metabolic homeostasis. Metabolism of xenobiotics, such as environmental chemicals and drugs by the liver protects us from toxic effects of these xenobiotics, whereas metabolism of cholesterol, bile acids (BAs), lipids, and glucose provide key building blocks and nutrients to promote the growth or maintain the survival of the organism. As a well-established master regulator of liver development and function, hepatocyte nuclear factor 4 alpha (HNF4α) plays a critical role in regulating a large number of key genes essential for the metabolism of xenobiotics, metabolic wastes, and nutrients. The expression and activity of HNF4α is regulated by diverse hormonal and signaling pathways such as growth hormone, glucocorticoids, thyroid hormone, insulin, transforming growth factor-β, estrogen, and cytokines. HNF4α appears to play a central role in orchestrating the transduction of extracellular hormonal signaling and intracellular stress/nutritional signaling onto transcriptional changes in the liver. There have been a few reviews on the regulation of drug metabolism, lipid metabolism, cell proliferation, and inflammation by HNF4α. However, the knowledge on how the expression and transcriptional activity of HNF4α is modulated remains scattered. Herein I provide comprehensive review on the regulation of expression and transcriptional activity of HNF4α, and how HNF4α crosstalks with diverse extracellular and intracellular signaling pathways to regulate genes essential in liver pathophysiology.
Collapse
|
12
|
Kulminski AM, Culminskaya I, Arbeev KG, Arbeeva L, Ukraintseva SV, Stallard E, Wu D, Yashin AI. Birth Cohort, Age, and Sex Strongly Modulate Effects of Lipid Risk Alleles Identified in Genome-Wide Association Studies. PLoS One 2015; 10:e0136319. [PMID: 26295473 PMCID: PMC4546650 DOI: 10.1371/journal.pone.0136319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Insights into genetic origin of diseases and related traits could substantially impact strategies for improving human health. The results of genome-wide association studies (GWAS) are often positioned as discoveries of unconditional risk alleles of complex health traits. We re-analyzed the associations of single nucleotide polymorphisms (SNPs) associated with total cholesterol (TC) in a large-scale GWAS meta-analysis. We focused on three generations of genotyped participants of the Framingham Heart Study (FHS). We show that the effects of all ten directly-genotyped SNPs were clustered in different FHS generations and/or birth cohorts in a sex-specific or sex-unspecific manner. The sample size and procedure-therapeutic issues play, at most, a minor role in this clustering. An important result was clustering of significant associations with the strongest effects in the youngest, or 3rd Generation, cohort. These results imply that an assumption of unconditional connections of these SNPs with TC is generally implausible and that a demographic perspective can substantially improve GWAS efficiency. The analyses of genetic effects in age-matched samples suggest a role of environmental and age-related mechanisms in the associations of different SNPs with TC. Analysis of the literature supports systemic roles for genes for these SNPs beyond those related to lipid metabolism. Our analyses reveal strong antagonistic effects of rs2479409 (the PCSK9 gene) that cautions strategies aimed at targeting this gene in the next generation of lipid drugs. Our results suggest that standard GWAS strategies need to be advanced in order to appropriately address the problem of genetic susceptibility to complex traits that is imperative for translation to health care.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
- * E-mail:
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Liubov Arbeeva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708–0408, United States of America
| |
Collapse
|
13
|
Lu H, Lei X, Zhang Q. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis. BMC Gastroenterol 2015. [PMID: 26219821 PMCID: PMC4518658 DOI: 10.1186/s12876-015-0325-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology. Method We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter. Results Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in liver, which was associated with higher lipogenic factors Pparγ, Lxr, Fasn, Scd1, and CD36. Conclusion In summary, moderate activation of IKK2-NF-kB in unstressed adult mouse hepatocytes produces a cytoprotective gene expression profile and induces lipogenesis without apparent signs of inflammation or fibrosis, likely due to strong activation of the anti-inflammatory IKK1-RelB alternative NF-kB pathway as well as the Lxr. Electronic supplementary material The online version of this article (doi:10.1186/s12876-015-0325-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, 750 E Adams ST, Syracuse, NY, 13210, USA.
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, 750 E Adams ST, Syracuse, NY, 13210, USA.
| | - Qinghao Zhang
- Department of Pharmacology, SUNY Upstate Medical University, 750 E Adams ST, Syracuse, NY, 13210, USA.
| |
Collapse
|
14
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015; 1288:429-46. [PMID: 25827895 DOI: 10.1007/978-1-4939-2474-5_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene, or a variety of genes at the same time. Availability of high quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
15
|
Su LC, Deng B, Liu S, Li LM, Hu B, Zhong YT, Li L. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. FRONTIERS IN PLANT SCIENCE 2015; 6:512. [PMID: 26217363 PMCID: PMC4499716 DOI: 10.3389/fpls.2015.00512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/25/2015] [Indexed: 05/18/2023]
Abstract
Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Li
- *Correspondence: Ling Li, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Avenue West, Tianhe District, Guangzhou 510631, China
| |
Collapse
|