1
|
Ferris AM, Dawson DG, Eyler AB, Yeager JJ, Bohannon JK, Boydston JA, Krause ML, Balzli CL, Wahl V, Jenkins TD, Rippeon SL, Miller JE, Miller SE, Clarke DW, Manan E, Harman AF, Rhodes KR, Sweeney TM, Cronin HD, Bowman RL, Winpigler MP, Zimmerman HA, Hail AS, Scorpio A. Bacillus cereus biovar anthracis causes inhalational anthrax-like disease in rabbits that is treatable with medical countermeasures. PLoS Negl Trop Dis 2025; 19:e0012973. [PMID: 40193393 PMCID: PMC12005533 DOI: 10.1371/journal.pntd.0012973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/17/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Bacillus anthracis is a zoonotic organism that causes the disease anthrax due to the activity of virulence factors harbored on plasmids pXO1 and pXO2. Inhalation of B. anthracis spores results in pneumonic disease that progresses quickly, and often results in lethality in the absence of medical countermeasure (MCM) intervention. Recently, reports have identified Bacillus cereus isolates that possess pXO1 and pXO2-like plasmids and cause an anthrax-like disease. These isolates have been named B. cereus biovar anthracis, or Bcbva. To evaluate disease course of Bcbva, the inhalational median lethal dose (INHLD50) was determined for two isolates, Bcbva Cameroon (CA) and Bcbva Cote d'Ivoire (CI), using the New Zealand white (NZW) rabbit inhalation anthrax model and compared to established B. anthracis inhalation data. Furthermore, disease progression and anthrax MCM efficacies were evaluated by quantifying temperature responses, bacteremia, and virulence factor production in both survivor and non-survivor animals. This study determined that the rabbit INHLD50 values for Bcbva CA and CI were similar to that published for B. anthracis Ames. The mean time to significant increase in body temperature (SIBT) and death were dose dependent for both Bcbva isolates, and all animals that succumbed to aerosol exposure displayed SIBT prior to death. Serum hyaluronic acid concentration increased prior to mortality in animals challenged with Bcbva and differences were observed in serum protective antigen concentration in animals challenged with Bcbva compared to B. anthracis. Pre-exposure vaccination with Anthrax Vaccine Adsorbed (AVA) and post-exposure prophylaxis of levofloxacin with or without AVA vaccination were effective against a challenge of ~200 INHLD50 of Bcbva CA or CI. Collectively, these data suggest that anthrax-like disease caused by Bcbva is similar to that caused by B. anthracis Ames 2084, and that currently available countermeasures are effective against inhalation exposure to Bcbva.
Collapse
Affiliation(s)
- Allison M. Ferris
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - David G. Dawson
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Andrea B. Eyler
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - John J. Yeager
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Jordan K. Bohannon
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Jeremy A. Boydston
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Melissa L. Krause
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Charles L. Balzli
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Tammy D. Jenkins
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Sherry L. Rippeon
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - James E. Miller
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Susan E. Miller
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - David W. Clarke
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Emmanuel Manan
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Ashley F. Harman
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Kim R. Rhodes
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Tina M. Sweeney
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Heather D. Cronin
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Ron L. Bowman
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Michael P. Winpigler
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Heather A. Zimmerman
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Alec S. Hail
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Angelo Scorpio
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| |
Collapse
|
2
|
Alternate atxA and acpA dependent response of Bacillus anthracis to serum, HCO3- and CO2. PLoS One 2023; 18:e0281879. [PMID: 36795682 PMCID: PMC9934324 DOI: 10.1371/journal.pone.0281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Bacillus anthracis overcomes host immune responses by producing capsule and secreting toxins. Production of these virulence factors in response to entering the host environment was shown to be regulated by atxA, the major virulence regulator, known to be activated by HCO3- and CO2. While toxin production is regulated directly by atxA, capsule production is independently mediated by two regulators; acpA and acpB. In addition, it was demonstrated that acpA has at least two promotors, one of them shared with atxA. We used a genetic approach to study capsule and toxin production under different conditions. Unlike previous works utilizing NBY, CA or R-HCO3- medium under CO2 enriched conditions, we used a sDMEM-based medium. Thus, toxin and capsule production can be induced in ambient or CO2 enriched atmosphere. Using this system, we could differentiate between induction by 10% NRS, 10% CO2 or 0.75% HCO3-. In response to high CO2, capsule production is induced by acpA based response in an atxA-independent manner, with little to no toxin (protective antigen PA) production. atxA based response is activated in response to serum independently of CO2, inducing toxin and capsule production in an acpA or acpB dependent manner. HCO3- was also found to activate atxA based response, but in non-physiological concentrations. Our findings may help explain the first stages of inhalational infection, in which spores germinating in dendritic cells require protection (by encapsulation) without affecting cell migration to the draining lymph-node by toxin secretion.
Collapse
|
3
|
Role of serine/threonine protein phosphatase PrpN in the life cycle of Bacillus anthracis. PLoS Pathog 2022; 18:e1010729. [PMID: 35913993 PMCID: PMC9371265 DOI: 10.1371/journal.ppat.1010729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 08/11/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Reversible protein phosphorylation at serine/threonine residues is one of the most common protein modifications, widely observed in all kingdoms of life. The catalysts controlling this modification are specific serine/threonine kinases and phosphatases that modulate various cellular pathways ranging from growth to cellular death. Genome sequencing and various omics studies have led to the identification of numerous serine/threonine kinases and cognate phosphatases, yet the physiological relevance of many of these proteins remain enigmatic. In Bacillus anthracis, only one ser/thr phosphatase, PrpC, has been functionally characterized; it was reported to be non-essential for bacterial growth and survival. In the present study, we characterized another ser/thr phosphatase (PrpN) of B. anthracis by various structural and functional approaches. To examine its physiological relevance in B. anthracis, a null mutant strain of prpN was generated and shown to have defects in sporulation and reduced synthesis of toxins (PA and LF) and the toxin activator protein AtxA. We also identified CodY, a global transcriptional regulator, as a target of PrpN and ser/thr kinase PrkC. CodY phosphorylation strongly controlled its binding to the promoter region of atxA, as shown using phosphomimetic and phosphoablative mutants. In nutshell, the present study reports phosphorylation-mediated regulation of CodY activity in the context of anthrax toxin synthesis in B. anthracis by a previously uncharacterized ser/thr protein phosphatase–PrpN. Reversible protein phosphorylation at specific ser/thr residues causes conformational changes in the protein structure, thereby modulating its cellular activity. In B. anthracis, though the role of ser/thr phosphorylation is implicated in various cellular pathways including pathogenesis, till date only one STP (PrpC) has been functionally characterized. This manuscript reports functional characterization of another STP (PrpN) in B. anthracis and with the aid of a null mutant strain (BAS ΔprpN) we provide important insight regarding the role of PrpN in the life cycle of B. anthracis. We have also identified the global transcriptional regulator, CodY as a target of PrpN and PrkC, and for the first time showed the physiological relevance of CodY phosphorylation status in the regulation of anthrax toxin synthesis.
Collapse
|
4
|
Paudel A, Furuta Y, Higashi H. Silkworm model for Bacillus anthracis infection and virulence determination. Virulence 2021; 12:2285-2295. [PMID: 34490836 PMCID: PMC8425766 DOI: 10.1080/21505594.2021.1965830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/07/2022] Open
Abstract
Bacillus anthracis is an obligate pathogen and a causative agent of anthrax. Its major virulence factors are plasmid-coded; however, recent studies have revealed chromosome-encoded virulence factors, indicating that the current understanding of its virulence mechanism is elusive and needs further investigation. In this study, we established a silkworm (Bombyx mori) infection model of B. anthracis. We showed that silkworms were killed by B. anthracis Sterne and cured of the infection when administered with antibiotics. We quantitatively determined the lethal dose of the bacteria that kills 50% larvae and effective doses of antibiotics that cure 50% infected larvae. Furthermore, we demonstrated that B. anthracis mutants with disruption in virulence genes such as pagA, lef, and atxA had attenuated silkworm-killing ability and reduced colonization in silkworm hemolymph. The silkworm infection model established in this study can be utilized in large-scale infection experiments to identify novel virulence determinants and develop novel therapeutic options against B. anthracis infections.
Collapse
Affiliation(s)
- Atmika Paudel
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Progress towards the Development of a NEAT Vaccine for Anthrax II: Immunogen Specificity and Alum Effectiveness in an Inhalational Model. Infect Immun 2020; 88:IAI.00082-20. [PMID: 32393506 DOI: 10.1128/iai.00082-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Collapse
|
6
|
Rapid and Sensitive Multiplex Assay for the Detection of B. anthracis Spores from Environmental Samples. Pathogens 2020; 9:pathogens9030164. [PMID: 32120986 PMCID: PMC7157734 DOI: 10.3390/pathogens9030164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Prompt and accurate detection of Bacillus anthracis spores is crucial in the event of intentional spore dissemination in order to reduce the number of expected casualties. Specific identification of these spores from environmental samples is both challenging and time-consuming. This is due to the high homology with other Bacillus species as well as the complex composition of environmental samples, which further impedes assay sensitivity. Previously, we showed that a short incubation of B.anthracis spores in a defined growth medium results in rapid germination, bacterial growth, and secretion of toxins, including protective antigen. In this work, we tested whether coupling the incubation process to a newly developed immune-assay will enable the detection of secreted toxins as markers for the presence of spores in environmental samples. The new immune assay is a flow cytometry-based multiplex that simultaneously detects a protective antigen, lethal factor, and edema factor. Our combined assay detects 1 × 103–1 × 104/mL spores after a 2 h incubation followed by the ~80 min immune-multiplex detection. Extending the incubation step to 5 h increased assay sensitivity to 1 × 102/mL spore. The protocol was validated in various environmental samples using attenuated or fully virulent B. anthracis spores. There was no substantial influence of contaminants derived from real environmental samples on the performance of the assay compared to clean samples, which allow the unequivocal detection of 3 × 103/mL and 3 × 102/mL spores following 2 and 5 hour’s incubation, respectively. Overall, we propose this method as a rapid, sensitive, and specific procedure for the identification of B. anthracis spores in environmental samples.
Collapse
|
7
|
Glinert I, Weiss S, Sittner A, Bar-David E, Ben-Shmuel A, Schlomovitz J, Kobiler D, Levy H. Infection with a Nonencapsulated Bacillus anthracis Strain in Rabbits-The Role of Bacterial Adhesion and the Potential for a Safe Live Attenuated Vaccine. Toxins (Basel) 2018; 10:toxins10120506. [PMID: 30513757 PMCID: PMC6316610 DOI: 10.3390/toxins10120506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Nonencapsulated (∆pXO2) Bacillus anthracis strains are commonly used as vaccines and for anthrax research, mainly in the mouse model. Previously, we demonstrated that the infection of rabbits, intranasally or subcutaneously, with the spores of a fully virulent strain results in the systemic dissemination of the bacteria, meningitis, and death, whereas ∆pXO2 strains are fully attenuated in this animal model. We used the intravenous inoculation of rabbits to study the pathogenicity of the ∆pXO2 strain infection. Bacteremia, brain bacterial burden, and pathology were used as criteria to compare the Vollum∆pXO2 disease to the wild type Vollum infection. To test the role of adhesion in the virulence of Vollum∆pXO2, we deleted the major adhesion protein BslA and tested the virulence and immunogenicity of this mutant. We found that 50% of the rabbits succumb to Vollum∆pXO2 strain following i.v. infection, a death that was accompanied with significant neurological symptoms. Pathology revealed severe brain infection coupled with an atypical massive bacterial growth into the parenchyma. Contrary to the Vollum strain, deletion of the bslA gene fully attenuated the ∆pXO2 strain. Though the Vollum∆pXO2 cannot serve as a model for B. anthracis pathogenicity in rabbits, deletion of the bslA gene prevents central nervous system (CNS) infections, possibly leading to the generation of a safer vaccine.
Collapse
Affiliation(s)
- Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel.
| |
Collapse
|
8
|
Sittner A, Bar-David E, Glinert I, Ben-Shmuel A, Weiss S, Schlomovitz J, Kobiler D, Levy H. Pathology of wild-type and toxin-independent Bacillus anthracis meningitis in rabbits. PLoS One 2017; 12:e0186613. [PMID: 29088287 PMCID: PMC5663420 DOI: 10.1371/journal.pone.0186613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023] Open
Abstract
Hemorrhagic meningitis is considered a complication of anthrax and was reported in about 50% of deadly cases in humans and non-human primates (NHP). Recently we demonstrated in Guinea pigs and rabbits that 100% of the B. anthracis-infected animals presented histopathology of meningitis at the time of death, some without any sign of hemorrhage. A similar pathology was observed in animals that succumbed following infection with the toxin deficient mutant, thus indicating that anthrax meningitis is a toxin-independent phenomenon. In this manuscript we describe a histopathological study of the B. anthracis infection of the central nervous system (CNS). Though we could find sporadic growth of the bacteria around blood vessels in the cortex, we report that the main infiltration route is the choroid plexus. We found massive destruction of entire sections of the choroid plexus coupled with massive aggregation of bacilli in the ventricles, in close proximity to the parenchyma. The choroid plexus also contained significant amounts of intravascular bacterial aggregates, often enclosed in what appear to be fibrin-like clots. The high concentration of these aggregates in areas of significant tissue destruction combined with the fact that capsular B. anthracis bacteria have a low tendency to adhere to endothelial cells, might suggest that these clots are used as an adherence mechanism by the bacteria. The major histopathological finding is meningitis. We find massive bacterial growth in the meninges without evidence of encephalitis, even when the bacteria emerge from a parenchymal blood vessel. Erythrocytes were present within the meningeal space but no clear vasculitis could be detected. Histology of the brain stem indicates meningitis, edema and hemorrhages that might explain death from suffocation due to direct damage to the respiratory center. All of these processes are toxin-independent, since they were observed following infection with either the wild type strain or the toxin-deficient mutant. Herein, we propose that the first step of anthrax-meningitis is bacterial adhesion to the blood vessels by manipulating coagulation, mainly in the choroid plexus. The trapped bacteria then destroy sections of the choroid plexus, resulting in penetration into the CSF, leading to meningitis and hemorrhage. Death could be the result of increased intracranial pressure and/or damage to the brain stem.
Collapse
Affiliation(s)
- Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
9
|
Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax. Antimicrob Agents Chemother 2016; 60:4878-85. [PMID: 27270276 DOI: 10.1128/aac.00546-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023] Open
Abstract
Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets.
Collapse
|
10
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
11
|
D'Amelio E, Gentile B, Lista F, D'Amelio R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. ENVIRONMENT INTERNATIONAL 2015; 85:133-146. [PMID: 26386727 DOI: 10.1016/j.envint.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. METHODS A PubMed search has been done using the key words “bioterrorism anthrax”. RESULTS Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. CONCLUSIONS The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.
Collapse
Affiliation(s)
| | - Bernardina Gentile
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Raffaele D'Amelio
- Sapienza University of Rome, Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Via di Grottarossa 1039, 00189 Rome, Italy.
| |
Collapse
|
12
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
13
|
Thorsen L, Kando CK, Sawadogo H, Larsen N, Diawara B, Ouédraogo GA, Hendriksen NB, Jespersen L. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. Int J Food Microbiol 2014; 196:70-8. [PMID: 25528535 DOI: 10.1016/j.ijfoodmicro.2014.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product, while the remaining isolates (PanC type IV) were detected in ash, at 48-72h fermentation and in the final product. This work sheds light on the succession and pathogenic potential of B. cereus species in traditional West African food condiment and clarifies their phylogenetic relatedness to B. cereus biovar anthracis. Future implementation of GMP and HACCP and development of starter cultures for controlled Maari fermentations will help to ensure a safe product.
Collapse
Affiliation(s)
- Line Thorsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Christine Kere Kando
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso; Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Hagrétou Sawadogo
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Bréhima Diawara
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | | | - Niels Bohse Hendriksen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Levy H, Glinert I, Weiss S, Bar-David E, Sittner A, Schlomovitz J, Altboum Z, Kobiler D. The central nervous system as target of Bacillus anthracis toxin independent virulence in rabbits and guinea pigs. PLoS One 2014; 9:e112319. [PMID: 25375158 PMCID: PMC4223028 DOI: 10.1371/journal.pone.0112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/03/2014] [Indexed: 01/03/2023] Open
Abstract
Infection of the central nervous system is considered a complication of Anthrax and was reported in humans and non-human primates. Previously we have reported that Bacillus anthracis possesses a toxin-independent virulent trait that, like the toxins, is regulated by the major virulence regulator, AtxA, in the presence of pXO2. This toxin-independent lethal trait is exhibited in rabbits and Guinea pigs following significant bacteremia and organ dissemination. Various findings, including meningitis seen in humans and primates, suggested that the CNS is a possible target for this AtxA-mediated activity. In order to penetrate into the brain tissue, the bacteria have to overcome the barriers isolating the CNS from the blood stream. Taking a systematic genetic approach, we compared intracranial (IC) inoculation and IV/SC inoculation for the outcome of the infection in rabbits/GP, respectively. The outstanding difference between the two models is exhibited by the encapsulated strain VollumΔpXO1, which is lethal when injected IC, but asymptomatic when inoculated IV/SC. The findings demonstrate that there is an apparent bottleneck in the ability of mutants to penetrate into the brain. Any mutant carrying either pXO1 or pXO2 will kill the host upon IC injection, but only those carrying AtxA either on pXO1 or in the chromosome in the background of pXO2 can penetrate into the brain following peripheral inoculation. The findings were corroborated by histological examination by H&E staining and immunofluorescence of rabbits' brains following IV and IC inoculations. These findings may have major implications on future research both on B. anthracis pathogenicity and on vaccine development.
Collapse
Affiliation(s)
- Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josef Schlomovitz
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Zeev Altboum
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Kobiler
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|