1
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
3
|
Mougeot JLC, Beckman MF, Bahrani Mougeot F, Horton JM. Cutaneous Microbiome Profiles Following Chlorhexidine Treatment in a 72-Hour Daily Follow-Up Paired Design: a Pilot Study. Microbiol Spectr 2022; 10:e0175321. [PMID: 35467392 PMCID: PMC9248901 DOI: 10.1128/spectrum.01753-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Abstract
Venous catheter-related bloodstream infections represent a significant problem in the United States. Our objective was to determine daily changes in skin microbiome profiles up to 72h postchlorhexidine treatment. Left and right forearm skin swab samples were obtained from 10 healthy volunteers over 72h at 24h intervals. Dorsal surface of left arm was treated with chlorohexidine gluconate (CHG) at initial time point (T = 0), while the right arm remained untreated (control). Swab samples were obtained shortly before (T = 0) and after CHG treatment (T = 24-48-72h). Bacterial DNA extraction, 16S rRNA gene V1-V3 sequencing and taxonomic annotation were performed using ZymoBIOMICS pipeline. PERMANOVA, linear discriminant and bacterial interaction network analyses were performed. A total of 13 total phyla, 273 genera, and 950 total species were detected across all time points, CHG-treated or CHG-untreated. Most abundant species included Cutibacterium acnes, Staphylococcus epidermidis, and Rothia Mucilaginosa. Low biomass-related inconsistent taxa detection was observed. PERMANOVA suggested a marginal difference between CHG-treated and CHG-untreated microbiome profiles (Genera: P(perm) = 0.0531; Species: P(perm) = 0.0450). Bacterial interaction network guided PERMANOVA analyses detected a microbiome change over time, suggesting a consistent CHG treatment-specific change. LEfSe identified Finegoldia magna, Bacillus pumilus, Bacillus thermoamylovorans as the only distinctive species. These species were more abundant and/or present post-CHG treatment in the CHG-treated group. These findings suggest that the skin microbiome was not significantly different 24, 48, or 72h after CHG treatment. Previous culture-based studies have found similar results after 24h. Future studies will be needed to determine the mechanisms of bacterial regrowth after CHG treatment. IMPORTANCE Annually, over 80,000 central line infections occur in the United States. Understanding the pathogenesis of these infections is crucial. Chlorhexidine is the most commonly used skin preparation before line placement. We hypothesized that the use of chlorhexidine and dressings will alter the normal arm skin microbiome over a period of 72h. We used 16S-rRNA gene next generation sequencing (NGS) to determine the forearm skin microbiome of volunteers. The left arm was swabbed with chlorhexidine and the right arm served as control. The skin microbiome returned to normal after 24h. Our NGS results confirm findings of two previous culture-based studies. Relative abundance of Bacillus spp. in the chlorhexidine-treated samples was increased, consistent with one previous study. Based on the results of this pilot study, we will need to measure viable bacteria during a 24h time course following chlorhexidine treatment to understand the source of skin microbiome replenishment.
Collapse
Affiliation(s)
| | | | | | - James M. Horton
- Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
4
|
Mucilaginibacter sp. Strain Metal(loid) and Antibiotic Resistance Isolated from Estuarine Soil Contaminated Mine Tailing from the Fundão Dam. Genes (Basel) 2022; 13:genes13020174. [PMID: 35205220 PMCID: PMC8871858 DOI: 10.3390/genes13020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
In 2015 a mine dam with Mn-Fe-rich tailings collapsed releasing million tons of sediments over an estuary, in the Southwest of Brazil. The tailings have a high concentration of metals that contaminated soil until the present day. The high contaminant concentrations possibly caused a selection for microorganisms able to strive in such harsh conditions. Here, we isolated metal(loid) and anti-biotic resistance bacteria from the contaminated estuarine soil. After 16S rDNA sequencing to identify the strains, we selected the Mucilaginibacter sp. strain for a whole-genome sequence due to the bioprospective potential of the genus and the high resistance profile. We obtained a complete genome and a genome-guided characterization. Our finding suggests that the 21p strain is possibly a new species of the genus. The species presented genes for resistance for metals (i.e., As, Zn, Co, Cd, and Mn) beyond resistance and cross-resistance for antibiotics (i.e., quinolone, aminoglycoside, β-lactamase, sulphonamide, tetracycline). The Mucilaginibacter sp. 21p description as new species should be further explored, as their extracellular polymeric substances and the potential of this strain as bioremediation and as a growth promoter in high met-al(loid) contaminated soil.
Collapse
|
5
|
Stanton CR, Rice DTF, Beer M, Batinovic S, Petrovski S. Isolation and Characterisation of the Bundooravirus Genus and Phylogenetic Investigation of the Salasmaviridae Bacteriophages. Viruses 2021; 13:1557. [PMID: 34452423 PMCID: PMC8402886 DOI: 10.3390/v13081557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Bacillus is a highly diverse genus containing over 200 species that can be problematic in both industrial and medical settings. This is mainly attributed to Bacillus sp. being intrinsically resistant to an array of antimicrobial compounds, hence alternative treatment options are needed. In this study, two bacteriophages, PumA1 and PumA2 were isolated and characterized. Genome nucleotide analysis identified the two phages as novel at the DNA sequence level but contained proteins similar to phi29 and other related phages. Whole genome phylogenetic investigation of 34 phi29-like phages resulted in the formation of seven clusters that aligned with recent ICTV classifications. PumA1 and PumA2 share high genetic mosaicism and form a genus with another phage named WhyPhy, more recently isolated from the United States of America. The three phages within this cluster are the only candidates to infect B. pumilus. Sequence analysis of B. pumilus phage resistant mutants revealed that PumA1 and PumA2 require polymerized and peptidoglycan bound wall teichoic acid (WTA) for their infection. Bacteriophage classification is continuously evolving with the increasing phages' sequences in public databases. Understanding phage evolution by utilizing a combination of phylogenetic approaches provides invaluable information as phages become legitimate alternatives in both human health and industrial processes.
Collapse
Affiliation(s)
- Cassandra R. Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Michael Beer
- Department of Defence Science and Technology, Port Melbourne, VIC 3207, Australia;
| | - Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (C.R.S.); (D.T.F.R.); (S.B.)
| |
Collapse
|
6
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
7
|
Bonifer KS, Wen X, Hasim S, Phillips EK, Dunlap RN, Gann ER, DeBruyn JM, Reynolds TB. Bacillus pumilus B12 Degrades Polylactic Acid and Degradation Is Affected by Changing Nutrient Conditions. Front Microbiol 2019; 10:2548. [PMID: 31824441 PMCID: PMC6882738 DOI: 10.3389/fmicb.2019.02548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Poly-lactic acid (PLA) is increasingly used as a biodegradable alternative to traditional petroleum-based plastics. In this study, we identify a novel agricultural soil isolate of Bacillus pumilus (B12) that is capable of degrading high molecular weight PLA films. This degradation can be detected on a short timescale, with significant degradation detected within 48-h by the release of L-lactate monomers, allowing for a rapid identification ideal for experimental variation. The validity of using L-lactate as a proxy for degradation of PLA films is corroborated by loss of rigidity and appearance of fractures in PLA films, as measured by atomic force microscopy and scanning electron microscopy (SEM), respectively. Furthermore, we have observed a dose-dependent decrease in PLA degradation in response to an amino acid/nucleotide supplement mix that is driven mainly by the nucleotide base adenine. In addition, amendments of the media with specific carbon sources increase the rate of PLA degradation, while phosphate and potassium additions decrease the rate of PLA degradation by B. pumilus B12. These results suggest B. pumilus B12 is adapting its enzymatic expression based on environmental conditions and that these conditions can be used to study the regulation of this process. Together, this work lays a foundation for studying the bacterial degradation of biodegradable plastics.
Collapse
Affiliation(s)
- Kyle S. Bonifer
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Xianfang Wen
- Department of Biosystems Engineering and Soil Science, Institute of Agriculture, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Elise K. Phillips
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Rachel N. Dunlap
- Department of Biosystems Engineering and Soil Science, Institute of Agriculture, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Eric R. Gann
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, Institute of Agriculture, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
8
|
Alteration of Proteomes in First-Generation Cultures of Bacillus pumilus Spores Exposed to Outer Space. mSystems 2019; 4:4/4/e00195-19. [PMID: 31186338 PMCID: PMC6561321 DOI: 10.1128/msystems.00195-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate their resistance to Mars-like conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified, and 301 proteins were differentially expressed among the strains. We found that proteins predicted to be involved in carbohydrate transport/metabolism and energy production/conversion had lower abundance than those of the ground control. For three proteins, we showed that the expected metabolic activities were decreased, as expected with direct enzymatic assays. This was consistent with a decrease of ATP production in the space-surviving strains. The same space-surviving strains showed increased abundance of proteins related to survival, growth advantage, and stress response. Such alterations in the proteomes provide insights into possible molecular mechanisms of B. pumilus SAFR-032 to adapt to and resist extreme extraterrestrial environments.IMPORTANCE Spore-forming bacteria are well known for their resistance to harsh environments and are of concern for spreading contamination to extraterrestrial bodies during future life detection missions. Bacillus pumilus has been regularly isolated from spacecraft-associated surfaces and exhibited unusual resistance to ultraviolet light and other sterilization techniques. A better understanding of the mechanisms of microbial survival and enhanced resistance is essential for developing novel disinfection protocols for the purpose of planetary protection. While genomic analyses did not reveal the unique characteristics that explain elevated UV resistance of space-exposed B. pumilus, the proteomics study presented here provided intriguing insight on key metabolic changes. The observed proteomics aberrations reveal a complex biological phenomenon that plays a role in bacterial survival and adaptation under long-term exposure to outer space. This adaptive ability of microorganisms needs to be considered by those tasked with eliminating forward contamination.
Collapse
|
9
|
Samson M, Yang T, Omar M, Xu M, Zhang X, Alphonse U, Rao Z. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme Microb Technol 2018; 119:10-16. [DOI: 10.1016/j.enzmictec.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/25/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023]
|
10
|
Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria. mBio 2018; 9:mBio.01603-18. [PMID: 30482829 PMCID: PMC6282198 DOI: 10.1128/mbio.01603-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology. Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae. Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes. A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.
Collapse
|
11
|
Hong JK, Jho EH, Choi HS, Kang G. Role of hemoglobin in hemoglobin-based remediation of the crude oil-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1174-1181. [PMID: 30857082 DOI: 10.1016/j.scitotenv.2018.01.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the changes in the indigenous microbial community structure with hemoglobin (Hb) application to determine the role of Hb in Hb-based remediation of crude oil-contaminated soil. The phylogenetic diversity of the bacterial community showed that the Hb addition selected surfactants-producing species, thereby, promoting TPH degradation. The significant increase in the CO2 generation, which can be related to the increase in the bacterial abundance inferred from the 16S rRNA gene copy number, supports the enhanced TPH degradation with Hb application. The similar residual TPH concentrations in the presence of only hydrogen peroxide (H2O2) and both Hb and H2O2 suggested that the role of Hb as a catalyst was not as significant as the role of Hb as a nutrient. Also, in the presence of H2O2, a greater recovery of the microbial community structure was observed with the double Hb injection than the single Hb injection. Overall, this study shows that the Hb-based remediation strategies via microbial metabolism can be successfully applied to remediate the crude-oil contaminated Kuwaiti soil.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do 17035, Republic of Korea
| | - Eun Hea Jho
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do 17035, Republic of Korea.
| | - Hyo Sub Choi
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do 17035, Republic of Korea
| | - Guyoung Kang
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do 17035, Republic of Korea
| |
Collapse
|
12
|
Hentschker C, Dewald C, Otto A, Büttner K, Hecker M, Becher D. Global quantification of phosphoproteins combining metabolic labeling and gel-based proteomics in B. pumilus. Electrophoresis 2017; 39:334-343. [DOI: 10.1002/elps.201700220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Hentschker
- Department of Microbial Proteomics; Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Carolin Dewald
- Chair of Materials Science; Otto Schott Institute of Materials Research; Friedrich-Schiller-University Jena; Jena Germany
| | - Andreas Otto
- Department of Microbial Proteomics; Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Knut Büttner
- Department of Microbial Physiology and Molecular Biology; Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Michael Hecker
- Department of Microbial Physiology and Molecular Biology; Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| | - Dörte Becher
- Department of Microbial Proteomics; Institute for Microbiology; Ernst-Moritz-Arndt-University Greifswald; Greifswald Germany
| |
Collapse
|
13
|
Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans. mBio 2017; 8:mBio.01537-17. [PMID: 28974618 PMCID: PMC5626971 DOI: 10.1128/mbio.01537-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. Pathogenic fungi are estimated to contribute to as many human deaths as tuberculosis or malaria. Two of the most common fungal pathogens, Cryptococcus neoformans and Candida albicans, account for up to 1.4 million infections per year with very high mortality rates. Few antifungal drugs are available for treatment, and development of novel therapies is complicated by the need for pathogen-specific targets. Therefore, there is an urgent need to identify novel drug targets and new drugs. Pathogens use virulence factors during infection, and it has recently been proposed that targeting these factors instead of the pathogen itself may represent a new approach to develop antimicrobials. Here, we identified a soil bacterium that specifically blocked virulence factor production and biofilm formation by C. neoformans and C. albicans. We demonstrate that the bacterial antipathogen mechanism is based in part on targeting the fungal cell wall, a structure not found in human cells.
Collapse
|
14
|
Han LL, Shao HH, Liu YC, Liu G, Xie CY, Cheng XJ, Wang HY, Tan XM, Feng H. Transcriptome profiling analysis reveals metabolic changes across various growth phases in Bacillus pumilus BA06. BMC Microbiol 2017; 17:156. [PMID: 28693413 PMCID: PMC5504735 DOI: 10.1186/s12866-017-1066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacillus pumilus can secret abundant extracellular enzymes, and may be used as a potential host for the industrial production of enzymes. It is necessary to understand the metabolic processes during cellular growth. Here, an RNA-seq based transcriptome analysis was applied to examine B. pumilus BA06 across various growth stages to reveal metabolic changes under two conditions. RESULTS Based on the gene expression levels, changes to metabolism pathways that were specific to various growth phases were enriched by KEGG analysis. Upon entry into the transition from the exponential growth phase, striking changes were revealed that included down-regulation of the tricarboxylic acid cycle, oxidative phosphorylation, flagellar assembly, and chemotaxis signaling. In contrast, the expression of stress-responding genes was induced when entering the transition phase, suggesting that the cell may suffer from stress during this growth stage. As expected, up-regulation of sporulation-related genes was continuous during the stationary growth phase, which was consistent with the observed sporulation. However, the expression pattern of the various extracellular proteases was different, suggesting that the regulatory mechanism may be distinct for various proteases. In addition, two protein secretion pathways were enriched with genes responsive to the observed protein secretion in B. pumilus. However, the expression of some genes that encode sporulation-related proteins and extracellular proteases was delayed by the addition of gelatin to the minimal medium. CONCLUSIONS The transcriptome data depict global alterations in the genome-wide transcriptome across the various growth phases, which will enable an understanding of the physiology and phenotype of B. pumilus through gene expression.
Collapse
Affiliation(s)
- Lin-Li Han
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Huan-Huan Shao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Yong-Cheng Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Gang Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Chao-Ying Xie
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Xiao-Jie Cheng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Hai-Yan Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Xue-Mei Tan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu, 610064 Sichuan People’s Republic of China
| |
Collapse
|
15
|
Handtke S, Albrecht D, Zühlke D, Otto A, Becher D, Schweder T, Riedel K, Hecker M, Voigt B. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain. Microb Cell Fact 2017; 16:72. [PMID: 28446175 PMCID: PMC5406934 DOI: 10.1186/s12934-017-0684-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/19/2017] [Indexed: 11/27/2022] Open
Abstract
Background Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. Results In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtiliskatA gene by katX2 we could significantly enhance its resistance to H2O2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Conclusions Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0684-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Handtke
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Daniela Zühlke
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Andreas Otto
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Kathrin Riedel
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany.,Institute of Marine Biotechnology, 17489, Greifswald, Germany
| | - Birgit Voigt
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany. .,Institute of Marine Biotechnology, 17489, Greifswald, Germany. .,Research Institute for Leather and Plastic Sheeting, Meißner-Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
16
|
Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry 2016; 112:83-90. [DOI: 10.1016/j.bioelechem.2016.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/27/2016] [Accepted: 05/20/2016] [Indexed: 01/09/2023]
|
17
|
Fulbright SP, Chisholm S, Reardon KF. Growth inhibition of Nannochloropsis species by Bacillus pumilus. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Assessment of Bacillus pumilus Isolated from Fresh Water Milieu for Bioflocculant Production. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6080211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Zhang Y, Li X, Hao Z, Xi R, Cai Y, Liao X. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. PLoS One 2016; 11:e0158351. [PMID: 27362423 PMCID: PMC4928806 DOI: 10.1371/journal.pone.0158351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.
Collapse
Affiliation(s)
- Yanzhou Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xunhang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- The Bioscience and Engineering College, Jiangxi Agriculture University, Nanchang, 330045, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, Taizhou Vocational & Technical College, Taizhou, 318000, China
| | - Ruchun Xi
- College of Forestry, South China Agricultural University, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
20
|
Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168. ACTA ACUST UNITED AC 2016; 43:729-40. [DOI: 10.1007/s10295-016-1758-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 103 s−1). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe2+ preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.
Collapse
|
21
|
Rosario-Cruz Z, Boyd JM. Physiological roles of bacillithiol in intracellular metal processing. Curr Genet 2015; 62:59-65. [PMID: 26259870 DOI: 10.1007/s00294-015-0511-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 01/22/2023]
Abstract
Glutathione (GSH) is an abundantly produced low-molecular-weight (LMW) thiol in many organisms. However, a number of Gram-positive bacteria do not produce GSH, but instead produce bacillithiol (BSH) as one of the major LMW thiols. Similar to GSH, studies have found that BSH has various roles in the cell, including protection against hydrogen peroxide, hypochlorite and disulfide stress. BSH also participates in the detoxification of thiol-reactive antibiotics and the electrophilic metabolite methylglyoxal. Recently, a number of studies have highlighted additional roles for BSH in the processing of intracellular metals. Herein, we examine the potential functions of BSH in the biogenesis of Fe-S clusters, cytosolic metal buffering and the prevention of metal intoxication.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
22
|
Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 2015; 98:218-42. [PMID: 26135358 DOI: 10.1111/mmi.13115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
Abstract
Staphylococcus aureus does not produce the low-molecular-weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH-deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron-sulfur (Fe-S) cluster-dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH-deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe-S cluster biogenesis. The phenotypes of the BSH-deficient strains were exacerbated in strains lacking the Fe-S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe-S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe-S clusters to apo-aconitase, verifying that it serves as an Fe-S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe-S clusters to apo-proteins in S. aureus.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Harsimranjit K Chahal
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Laura A Mike
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
23
|
Brack C, Mikolasch A, Schlueter R, Otto A, Becher D, Wegner U, Albrecht D, Riedel K, Schauer F. Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:290-304. [PMID: 25678259 DOI: 10.1007/s10126-015-9614-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The marine isolate Bacillus pumilus SBUG 1800 is able to lyse living cells of Arthrobacter citreus on solid media as well as pasteurized A. citreus cells in liquid mineral salt medium. The cultivation of B. pumilus in the presence of pasteurized A. citreus is accompanied by an enhanced production of 2,5-diketopiperazines (DKPs). DKPs inhibit bacterial growth, but do not seem to cause bacteriolysis. This study shows that B. pumilus also lyses living cells of A. citreus in co-culture experiments as an intraguild predator, even if the inoculum of B. pumilus is low. In order to characterize the bacteriolytic process, more precisely changes in the extracellular metabolome and proteome have been analyzed under different culture conditions. Besides the known DKPs, a number of different pumilacidins and bacteriolytic enzymes are produced. Two lipopeptides with [M + H](+) = 1008 and [M + H](+) = 1022 were detected and are proposed to be pumilacidin H and I. While the lipopeptides lyse living bacterial cells in lysis test assays, a set of extracellular enzymes degrades the dead cell material. Two of the cell wall hydrolases involved have been identified as N-acetylmuramoyl-L-alanine amidase and beta-N-acetylglucosaminidase. These findings together with electron microscopic and cell growth monitoring during co-culture experiments give a detailed view on the bacteriolytic process.
Collapse
Affiliation(s)
- Christiane Brack
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Ludwig Jahn-Str. 15, 17487, Greifswald, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
25
|
Yuan Y, Peng Q, Wu D, Kou Z, Wu Y, Liu P, Gao M. Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl Environ Microbiol 2015; 81:339-50. [PMID: 25344242 PMCID: PMC4272706 DOI: 10.1128/aem.02889-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
We characterized two newly isolated myoviruses, Bp8p-C and Bp8p-T, infecting the ginger rhizome rot disease pathogen Bacillus pumilus GR8. The plaque of Bp8p-T exhibited a clear center with a turbid rim, suggesting that Bp8p-T could transform into latent phage. Lysogeny assays showed that both the two phages could form latent states, while Bp8p-T could form latent phage at a higher frequency and stability than Bp8p-C. The genomes of Bp8p-C and Bp8p-T were 151,417 and 151,419 bp, respectively; both encoded 212 putative proteins, and only differed by three nucleotides. Moreover, owing to this difference, Bp8p-C encoded a truncated, putative actin-like plasmid segregation protein Gp27-C. Functional analysis of protein Gp27 showed that Gp27-T encoded by Bp8p-T exhibited higher ATPase activity and assembly ability than Gp27-C. The results indicate that the difference in Gp27 affected the phage lysogenic ability. Structural proteome analysis of Bp8p-C virion resulted in the identification of 14 structural proteins, among which a pectin lyase-like protein, a putative poly-gamma-glutamate hydrolase, and three proteins with unknown function, were firstly identified as components of the phage virion. Both phages exhibited specific lytic ability to the host strain GR8. Bp8p-C showed better control effect on the pathogen in ginger rhizome slices than Bp8p-T, suggesting that Bp8p-C has a potential application in bio-control of ginger rhizome rot disease.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qin Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zheng Kou
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Expression of concern: Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress. PLoS One 2014; 9:e100716. [PMID: 25010116 PMCID: PMC4091937 DOI: 10.1371/journal.pone.0100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|