1
|
Qin S, Chen H, Tian C, Chen Z, Zuo L, Zhang X, Hao H, Huang F, Liu H, Sun X, Guan W. NS1-mediated DNMT1 degradation regulates human bocavirus 1 replication and RNA processing. PLoS Pathog 2024; 20:e1012682. [PMID: 39541416 PMCID: PMC11594422 DOI: 10.1371/journal.ppat.1012682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Methylation of the DNA genome plays an important role in viral gene inactivation. However, the role of DNA methylation in human bocavirus (HBoV) remains unclear. In this study, the HBoV1 genomic DNA was found extensively methylated at the CHG and CHH sites. Inhibiting DNA methylation with 5-aza-2'-deoxycytidine (DAC) altered the methylation status and reduced viral DNA production, while enhanced the RNA splicing at D1 and D3 sites and the polyadenylation at the proximal polyadenylation site, (pA)p. Knockdown of DNA methyltransferase 1 (DNMT1) had the same effect on viral DNA synthesis and RNA processing as the DAC treatment, indicating that DNMT1 is the major host methyltransferase involved in viral DNA methylation. In addition, the nonstructural protein NS1 promoted DNMT1 degradation through the ubiquitin-proteasome pathway to regulate viral replication and RNA processing. Collectively, the results suggest that DNA methylation and DNMT1 facilitate HBoV replication and are essential for appropriate NS1 localization in the nucleus. DNMT1 degradation through NS1 promotes the virus RNA processing, leading to viral protein expression.
Collapse
Affiliation(s)
- Shuangkang Qin
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Honghe Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chuchu Tian
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Zuo
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Fang Huang
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Xiulian Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
2
|
Methylation Status of the Adeno-Associated Virus Type 2 (AAV2). Viruses 2019; 11:v11010038. [PMID: 30634383 PMCID: PMC6356613 DOI: 10.3390/v11010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
To analyze the methylation status of wild-type adeno-associated virus type 2 (AAV2), bisulfite PCR sequencing (BPS) of the packaged viral genome and its integrated form was performed and 262 of the total 266 CG dinucleotides (CpG) were mapped. In virion-packaged DNA, the ratio of the methylated cytosines ranged between 0⁻1.7%. In contrast, the chromosomally integrated AAV2 genome was hypermethylated with an average of 76% methylation per CpG site. The methylation level showed local minimums around the four known AAV2 promoters. To study the effect of methylation on viral rescue and replication, the replication initiation capability of CpG methylated and non-CpG methylated AAV DNA was compared. The in vitro hypermethylation of the viral genome does not inhibit its rescue and replication from a plasmid transfected into cells. This insensitivity of the viral replicative machinery to methylation may permit the rescue of the integrated heavily methylated AAV genome from the host's chromosomes.
Collapse
|
3
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|